Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239918

RESUMO

Amyloids are fibrillar protein aggregates with a cross-ß structure. More than two hundred different proteins with amyloid or amyloid-like properties are already known. Functional amyloids with conservative amyloidogenic regions were found in different organisms. Protein aggregation appears to be beneficial for the organism in these cases. Therefore, this property might be conservative for orthologous proteins. The amyloid aggregates of the CPEB protein were suggested to play an important role in the long-term memory formation in Aplysia californica, Drosophila melanogaster, and Mus musculus. Moreover, the FXR1 protein demonstrates amyloid properties among the Vertebrates. A few nucleoporins (e.g., yeast Nup49, Nup100, Nup116, and human Nup153 and Nup58), are supposed or proved to form amyloid fibrils. In this study, we performed wide-scale bioinformatic analysis of nucleoporins with FG-repeats (phenylalanine-glycine repeats). We demonstrated that most of the barrier nucleoporins possess potential amyloidogenic properties. Furthermore, the aggregation-prone properties of several Nsp1 and Nup100 orthologs in bacteria and yeast cells were analyzed. Only two new nucleoporins, Drosophila melanogaster Nup98 and Schizosaccharomyces pombe Nup98, aggregated in different experiments. At the same time, Taeniopygia guttata Nup58 only formed amyloids in bacterial cells. These results rather contradict the hypothesis about the functional aggregation of nucleoporins.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Saccharomyces cerevisiae , Camundongos , Animais , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Amiloide/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Amiloidogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Nucleares/metabolismo
2.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680573

RESUMO

Amyloids are fibrillar protein aggregates with a cross-ß structure and unusual features, including high resistance to detergent or protease treatment. More than two hundred different proteins with amyloid or amyloid-like properties are already known. Several examples of nucleoporins (e.g., yeast Nup49, Nup100, Nup116, and human NUP153) are supposed to form amyloid fibrils. In this study, we demonstrated an ability of the human NUP58 nucleoporin to form amyloid aggregates in vivo and in vitro. Moreover, we found two forms of NUP58 aggregates: oligomers and polymers stabilized by disulfide bonds. Bioinformatic analysis revealed that all known orthologs of this protein are potential amyloids which possess several regions with conserved ability to aggregation. The biological role of nucleoporin amyloid formation is debatable. We suggest that it is a rather abnormal process, which is characteristic for many proteins implicated in phase separation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa