RESUMO
INTRODUCTION: Diabetes causes complications like delayed wound healing for a long time. Fibroin, aloe vera, and ginger extracts along with their combinations are used for diabetic wound healing. METHODS: After induction of diabetes, The wound healing effects of fibroin (50 mg/ml), aloe vera gel (50 mg/ml), and ginger extract (30 mg/ml), individually and in combination, were assessed. The pro-inflammatory cytokines including tumor narcosis factor-α (TNF-α) interleukin (IL-6, IL-8, IL-1ß), matrix metalloproteinases (MMP 2, MMP7, MMP 9), vascular endothelial growth factor (VEGF) and tissue inhibitors of metalloproteinases (TIMPs) levels were analyzed in the serum. RESULTS: A combination of fibroin + aloe vera gel + ginger extract (Fi + Al + Gi) healed the wounds in 11 days via wound contraction of 98.5 ± 0.9 % as compared to diabetic control (58.2 ± 0.7 %) and positive control (73.3 ± 0.6 %) groups. However, the wounds of the Polyfax and the diabetic control groups were healed in 17 and 19 days, corresponding to a contraction of: 96.7 ± 1.4 % and 96.3 ± 1.1 %. The histological assay showed that the Fi + Al + Gi group indicated an increased growth of collagen fibers, fibroblasts, keratinocytes and blood vessels with lessened inflammation. The Fi + Al + Gi group alleviated the serum level of TNF-α (12.7 ± 0.9 pg/ml), IL-6 (9.6 ± 0.9 pg/ml), IL-8 (19.6 ± 1.0 pg/ml), MMP2 (217.0 ± 9.2 pg/ml), MMP7 (279.0 ± 9.8 pg/ml), and MMP9 (156.0 ± 11.6 pg/ml) significantly as compared to the diabetic control (P ≤ 0.05). TIMP serum level (202.0 ± 6.9 pg/ml) was significantly elevated as compared to the diabetes control group. CONCLUSION: The present study concludes that the biomaterials in their combinations possess high regenerative and healing abilities.
RESUMO
Diabetes mellitus causes impaired diabetic wounds which is linked to a number of pathological alterations that impede the healing of wounds. In the current research, Swiss albino mice were given alloxan monohydrate to induce diabetes and excision wounds of approximately 6 mm using biopsy punch. The diabetic wounds were treated with various biomaterials including Vachellia nilotica extract (VN), Nigella sativa extract (NS), V. nilotica nanoparticles (VNNPs) and N. sativa nanoparticles (NSNPs). Their effects were determined by evaluating the percent wound contraction, healing time, and histopathological analysis. The serum level of various biochemical parameters that is, pro-inflammatory cytokines, Matrix metalloproteinases (MMPs) and tissue inhibitor matrix metalloproteinases (TIMPs) were also determined. VNNPs group provided the best outcomes, with wound contraction 100% on 12th day. According to histopathological examination, VNNPs group reduced inflammation and encouraged the formation of blood vessels, fibroblasts, and keratinocytes. VNNPs group significantly alleviated the serum level of pro-inflammatory cytokines that are, TNF-α (19.4 ± 1.5 pg/mL), IL-6 (13.8 ± 0.6 pg/mL), and IL-8 (24.8 ± 1.2 pg/mL) as compared with the diabetic mice. The serum level of MMP2 (248.2 ± 7.9 pg/mL), MMP7 (316 ± 5.2 pg/mL), and MMP9 (167.8 ± 12.1 pg/mL) in the same group VNNPs were also observed much less than the diabetic mice. The serum level of TIMPs (176.8 ± 2.9 pg/mL) in the VNNPs group was increased maximally with respect to diabetic mice. It is concluded that nanoparticles and biomaterials possess healing properties and have the ability to repair the chronic/diabetic wound. RESEARCH HIGHLIGHTS: UV-spectrophotometric and Fourier transform infrared spectroscopy observation for functional group analysis and possible linkage between conjugates Optimization of the histopathological and biochemical markers after application of the formulations Microscopic analysis of epithelial tissues for evaluation of healing mechanisms Speedy contraction of wounds as the alleviation of the inflammatory and necrotic factors.
RESUMO
Diabetes is involved in delayed wound healing that can be cured by natural products such as garlic, turmeric, and fibroin extracts. Alloxan monohydrate is used for inducing diabetes in mice. The percent wound contraction of garlic (150 mg/ml), turmeric (100 mg/ml), and fibroin (50 mg/ml), individually and in combinations garlic (150 mg/ml) + fibroin (50 mg/ml), turmeric (100 mg/ml) + fibroin (50 mg/ml), garlic (150 mg/ml) + turmeric (100 mg/ml), and garlic (150 mg/ml) + turmeric (100 mg/ml) + fibroin (50 mg/ml) was checked by evaluating the healing time, % wound contraction and histological analysis. The serum level of MMPs (MMP 2, MMP7, MMP 9), pro-inflammatory cytokines (TNF-α, IL-6, IL-8), and TIMPs were evaluated. With the combination of three extracts (Ga+Tu+Fi) garlic (150 mg/ml), turmeric (100 mg/ml) and fibroin (50 mg/ml), wounds healed in 12 days and had 97.3 ± 2.2% wound contraction. While the positive control (polyfax) and diabetic control (saline) wounds healed in 17- and 19-days with wound contraction of 96.7 ± 1.4% and 96.3 ± 1.1%, respectively. Histological analysis showed that the combination of Ga+Tu+Fi exhibited an increase in the growth of collagen fibers, fibroblasts number, and keratinocytes, and lessened inflammation of blood vessels. The combination of Ga+Tu+Fi significantly alleviated the serum concentration of TNF-α (14.2 ± 0.7 pg/ml), IL-6 (10.0 ± 1.0 pg/ml), IL-8 (16.0 ± 1.5 pg/ml), MMP2 (228.0 ± 18.1 pg/ml), MMP7 (271.0 ± 9.9 pg/ml), and MMP9 (141.0 ± 5.3 pg/ml) to diabetic control. The level of TIMPs (193.0 ± 9.1 pg/ml) was increased significantly with respect to diabetic control. We conclude that the combination of these biomaterials possessed high regenerative and healing capabilities and can be an effective remedy in the healing of chronic wounds in diabetic patients.