Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 147(6): 1309-23, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22153075

RESUMO

During cell division, cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule copurifying proteins (MMCPs). Screening for regulators that affect both mitosis and apoptosis, we report the identification and characterization of STARD9, a kinesin-3 family member, which localizes to centrosomes and stabilizes the pericentriolar material (PCM). STARD9-depleted cells have fragmented PCM, form multipolar spindles, activate the spindle assembly checkpoint (SAC), arrest in mitosis, and undergo apoptosis. Interestingly, STARD9-depletion synergizes with the chemotherapeutic agent taxol to increase mitotic death, demonstrating that STARD9 is a mitotic kinesin and a potential antimitotic target.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Proteínas dos Microtúbulos/análise , Microtúbulos/metabolismo , Mitose , Neoplasias/patologia , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Centríolos/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Neoplasias/metabolismo , Filogenia , Proteoma/análise , Alinhamento de Sequência , Fuso Acromático
2.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638575

RESUMO

Mitotic kinesin-like protein 2 (MKLP2; also known as KIF20A) is a motor protein with a well-established function in promoting cytokinesis. However, our results with siRNAs targeting MKLP2 and small-molecule inhibitors of MKLP2 (MKLP2i) suggest that it also has a function earlier in mitosis, prior to anaphase. In this study, we provide direct evidence that MKLP2 facilitates chromosome congression in prometaphase. We employed live imaging to observe HeLa cells with fluorescently tagged histones treated with MKLP2i and discovered a pronounced chromosome congression defect. We show that MKLP2 facilitates error correction, as inhibited cells have a significant increase in unstable, syntelic kinetochore-microtubule attachments. We find that the aberrant attachments are accompanied by elevated Aurora kinase (A and B) activity and phosphorylation of the downstream target HEC1 (also known as NDC80) at Ser55. Finally, we show that MKLP2 inhibition results in aneuploidy, confirming that MKLP2 safeguards cells against chromosomal instability. This article has an associated First Person interview with the first author of the paper.


Assuntos
Cinesinas/metabolismo , Mitose , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Segregação de Cromossomos , Cromossomos/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Fuso Acromático/metabolismo
3.
J Biol Chem ; 297(4): 101184, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509474

RESUMO

The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Endopeptidases/metabolismo , Fase S , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA , Replicação do DNA , Endopeptidases/genética , Estabilidade Enzimática , Instabilidade Genômica , Células HCT116 , Células HeLa , Histonas , Humanos , Células MCF-7 , Ubiquitinação
4.
Nucleic Acids Res ; 48(2): 736-747, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31740976

RESUMO

Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are predominantly repaired by non-homologous end joining (NHEJ). IR-induced DNA damage activates autophagy, an intracellular degradation process that delivers cytoplasmic components to the lysosome. We identified the deubiquitinase USP14 as a novel autophagy substrate and a regulator of IR-induced DNA damage response (DDR) signaling. Inhibition of autophagy increased levels and DSB recruitment of USP14. USP14 antagonized RNF168-dependent ubiquitin signaling and downstream 53BP1 chromatin recruitment. Here we show that autophagy-deficient cells are defective in NHEJ, as indicated by decreased IR-induced foci (IRIF) formation by pS2056-, pT2609-DNA-PKcs, pS1778-53BP1, RIF1 and a reporter assay activation. Moreover, chromatin recruitment of key NHEJ proteins, including, Ku70, Ku80, DNA-PKcs and XLF was diminished in autophagy-deficient cells. USP14 inhibition rescued the activity of NHEJ-DDR proteins in autophagy-deficient cells. Mass spectrometric analysis identified USP14 interaction with core NHEJ proteins, including Ku70, which was validated by co-immunoprecipitation. An in vitro assay revealed that USP14 targeted Ku70 for deubiquitination. AKT, which mediates Ser432-USP14 phosphorylation, was required for IRIF formation by USP14. Similar to USP14 block, AKT inhibition rescued the activity of NHEJ-DDR proteins in autophagy- and PTEN-deficient cells. These findings reveal a novel negative PTEN/Akt-dependent regulation of NHEJ by USP14.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos da radiação , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ubiquitina Tiolesterase/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Autofagia/efeitos da radiação , Cromatina/genética , Cromatina/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Células HEK293 , Humanos , Autoantígeno Ku/genética , PTEN Fosfo-Hidrolase/deficiência , Radiação Ionizante , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
5.
Semin Cancer Biol ; 67(Pt 2): 80-91, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165320

RESUMO

The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Neoplasias/patologia , Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/genética , Antígenos CD/genética , Carbamatos/farmacologia , Proteínas Cdc20/genética , Proteínas Cdh1/genética , Diaminas/farmacologia , Instabilidade Genômica , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/genética
6.
Mol Cell ; 42(4): 511-23, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21596315

RESUMO

Cell cycle progression requires the E3 ubiquitin ligase anaphase-promoting complex (APC/C), which uses the substrate adaptors CDC20 and CDH1 to target proteins for proteasomal degradation. The APC(CDH1) substrate cyclin A is critical for the G1/S transition and, paradoxically, accumulates even when APC(CDH1) is active. We show that the deubiquitinase USP37 binds CDH1 and removes degradative polyubiquitin from cyclin A. USP37 was induced by E2F transcription factors in G1, peaked at G1/S, and was degraded in late mitosis. Phosphorylation of USP37 by CDK2 stimulated its full activity. USP37 overexpression caused premature cyclin A accumulation in G1 and accelerated S phase entry, whereas USP37 knockdown delayed these events. USP37 was inactive in mitosis because it was no longer phosphorylated by CDK2. Indeed, it switched from an antagonist to a substrate of APC(CDH1) and was modified with degradative K11-linked polyubiquitin.


Assuntos
Caderinas/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Endopeptidases/metabolismo , Fase S , Antígenos CD , Ciclina A/metabolismo , Fatores de Transcrição E2F/metabolismo , Células HEK293 , Humanos , Mitose , Fosforilação , Poliubiquitina/metabolismo , Regulação para Cima
8.
Mol Cell ; 31(4): 544-556, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18722180

RESUMO

In vitro, the anaphase-promoting complex (APC) E3 ligase functions with E2 ubiquitin-conjugating enzymes of the E2-C and Ubc4/5 families to ubiquitinate substrates. However, only the use of the E2-C family, notably UbcH10, is genetically well validated. Here, we biochemically demonstrate preferential use of UbcH10 by the APC, specified by the E2 core domain. Importantly, an additional E2-E3 interaction mediated by the N-terminal extension of UbcH10 regulates APC activity. Mutating the highly conserved N terminus increases substrate ubiquitination and the number of substrate lysines targeted, allows ubiquitination of APC substrates lacking their destruction boxes, increases resistance to the APC inhibitors Emi1 and BubR1 in vitro, and bypasses the spindle checkpoint in vivo. Fusion of the UbcH10 N terminus to UbcH5 restricts ubiquitination activity but does not direct specific interactions with the APC. Thus, UbcH10 combines a specific E2-E3 interface and regulation via its N-terminal extension to limit APC activity for substrate selection and checkpoint control.


Assuntos
Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos
9.
J Biol Chem ; 289(16): 11367-11373, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24596092

RESUMO

The spindle assembly checkpoint (SAC) ensures the faithful segregation of the genome during mitosis by ensuring that sister chromosomes form bipolar attachments with microtubules of the mitotic spindle. p31(Comet) is an antagonist of the SAC effector Mad2 and promotes silencing of the SAC and mitotic progression. However, p31(Comet) interacts with Mad2 throughout the cell cycle. We show that p31(Comet) binds Mad2 solely in an inhibitory manner. We demonstrate that attenuating the affinity of p31(Comet) for Mad2 by phosphorylation promotes SAC activity in mitosis. Specifically, phosphorylation of Ser-102 weakens p31(Comet)-Mad2 binding and enhances p31(Comet)-mediated bypass of the SAC. Our results provide the first evidence for regulation of p31(Comet) and demonstrate a previously unknown event controlling SAC activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Mad2/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Proteínas Mad2/genética , Proteínas Nucleares/genética , Fosforilação/fisiologia , Ligação Proteica/fisiologia
10.
J Biol Chem ; 287(46): 39021-9, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23027877

RESUMO

Ubiquitin-mediated proteolysis is a key regulatory process in cell cycle progression. The Skp1-Cul1-F-box (SCF) and anaphase-promoting complex (APC) ubiquitin ligases target numerous components of the cell cycle machinery for destruction. Throughout the cell cycle, these ligases cooperate to maintain precise levels of key regulatory proteins, and indirectly, each other. Recently, we have identified the deubiquitinase USP37 as a regulator of the cell cycle. USP37 expression is cell cycle-regulated, being expressed in late G(1) and ubiquitinated by APC(Cdh1) in early G(1). Here we report that in addition to destruction at G(1), a major fraction of USP37 is degraded at the G(2)/M transition, prior to APC substrates and similar to SCF(ßTrCP) substrates. Consistent with this hypothesis, USP37 interacts with components of the SCF in a ßTrCP-dependent manner. Interaction with ßTrCP and subsequent degradation is phosphorylation-dependent and is mediated by the Polo-like kinase (Plk1). USP37 is stabilized in G(2) by depletion of ßTrCP as well as chemical or genetic manipulation of Plk1. Similarly, mutation of the phospho-sites abolishes ßTrCP binding and renders USP37 resistant to Plk1 activity. Expression of this mutant hinders the G(2)/M transition. Our data demonstrate that tight regulation of USP37 levels is required for proper cell cycle progression.


Assuntos
Proteínas Culina/metabolismo , Endopeptidases/química , Regulação Enzimológica da Expressão Gênica , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Fase G2 , Células HEK293 , Células HeLa , Humanos , Mitose , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitina/química , Quinase 1 Polo-Like
11.
Cancers (Basel) ; 15(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37370783

RESUMO

Glioblastoma, IDH-wild type (GBM) is the most common and lethal malignant primary brain tumor. Standard of care includes surgery, radiotherapy, and chemotherapy with the DNA alkylating agent temozolomide (TMZ). Despite these intensive efforts, current GBM therapy remains mainly palliative with only modest improvement achieved in overall survival. With regards to radiotherapy, GBM is ranked as one of the most radioresistant tumor types. In this study, we wanted to investigate if enriching cells in the most radiosensitive cell cycle phase, mitosis, could improve localized radiotherapy for GBM. To achieve cell cycle arrest in mitosis we used ispinesib, a small molecule inhibitor to the mitotic kinesin, KIF11. Cell culture studies validated that ispinesib radiosensitized patient-derived GBM cells. In vivo, we validated that ispinesib increased the fraction of tumor cells arrested in mitosis as well as increased apoptosis. Critical for the translation of this approach, we validated that combination therapy with ispinesib and irradiation led to the greatest increase in survival over either monotherapy alone. Our data highlight KIF11 inhibition in combination with radiotherapy as a new combinatorial approach that reduces the overall radioresistance of GBM and which can readily be moved into clinical trials.

12.
Vet Comp Oncol ; 21(3): 492-502, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254642

RESUMO

High-grade glioma is an aggressive cancer that occurs naturally in pet dogs. Canine high-grade glioma (cHGG) is treated with radiation, chemotherapy or surgery, but has no curative treatment. Within the past eight years, there have been advances in our imaging and histopathology standards as well as genetic charactereization of cHGG. However, there are only three cHGG cell lines publicly available, all of which were derived from astrocytoma and established using methods involving expansion of tumour cells in vitro on plastic dishes. In order to provide more clinically relevant cell lines for studying cHGG in vitro, the goal of this study was to establish cHGG patient-derived lines, whereby cancer cells are expanded in vivo by injecting cells into immunocompromized laboratory mice. The cells are then harvested from mice and used for in vitro studies. This method is the standard in the human field and has been shown to minimize the acquisition of genetic alterations and gene expression changes from the original tumour. Through a multi-institutional collaboration, we describe our methods for establishing two novel cHGG patient-derived lines, Boo-HA and Mo-HO, from a high-grade astrocytoma and a high-grade oligodendroglioma, respectively. We compare our novel lines to G06-A, J3T-Bg, and SDT-3G (traditional cHGG cell lines) in terms of proliferation and sensitivity to radiation. We also perform whole genome sequencing and identify an NF1 truncating mutation in Mo-HO. We report the characterization and availability of these novel patient-derived lines for use by the veterinary community.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Doenças do Cão , Glioma , Humanos , Cães , Animais , Camundongos , Glioma/genética , Glioma/veterinária , Glioma/metabolismo , Astrocitoma/genética , Astrocitoma/veterinária , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/veterinária , Neoplasias Encefálicas/patologia
13.
Sci Rep ; 13(1): 12424, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528172

RESUMO

GBM (Glioblastoma) is the most lethal CNS (Central nervous system) tumor in adults, which inevitably develops resistance to standard treatments leading to recurrence and mortality. TRIB1 is a serine/threonine pseudokinase which functions as a scaffold platform that initiates degradation of its substrates like C/EBPα through the ubiquitin proteasome system and also activates MEK and Akt signaling. We found that increased TRIB1 gene expression associated with worse overall survival of GBM patients across multiple cohorts. Importantly, overexpression of TRIB1 decreased RT/TMZ (radiation therapy/temozolomide)-induced apoptosis in patient derived GBM cell lines in vitro. TRIB1 directly bound to MEK and Akt and increased ERK and Akt phosphorylation/activation. We also found that TRIB1 protein expression was maximal during G2/M transition of cell cycle in GBM cells. Furthermore, TRIB1 bound directly to HDAC1 and p53. Importantly, mice bearing TRIB1 overexpressing tumors had worse overall survival. Collectively, these data suggest that TRIB1 induces resistance of GBM cells to RT/TMZ treatments by activating the cell proliferation and survival pathways thus providing an opportunity for developing new targeted therapeutics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Apoptose/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia
14.
J Cell Biol ; 178(3): 371-85, 2007 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-17664332

RESUMO

Overexpression of cyclin E, an activator of cyclin-dependent kinase 2, has been linked to human cancer. In cell culture models, the forced expression of cyclin E leads to aneuploidy and polyploidy, which is consistent with a direct role of cyclin E overexpression in tumorigenesis. In this study, we show that the overexpression of cyclin E has a direct effect on progression through the latter stages of mitotic prometaphase before the complete alignment of chromosomes at the metaphase plate. In some cases, such cells fail to divide chromosomes, resulting in polyploidy. In others, cells proceed to anaphase without the complete alignment of chromosomes. These phenotypes can be explained by an ability of overexpressed cyclin E to inhibit residual anaphase-promoting complex (APC(Cdh1)) activity that persists as cells progress up to and through the early stages of mitosis, resulting in the abnormal accumulation of APC(Cdh1) substrates as cells enter mitosis. We further show that the accumulation of securin and cyclin B1 can account for the cyclin E-mediated mitotic phenotype.


Assuntos
Ciclo Celular/fisiologia , Ciclina E/metabolismo , Mitose/fisiologia , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Linhagem Celular , Ciclina A/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Humanos , Microscopia de Fluorescência/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Securina , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Exp Hematol Oncol ; 11(1): 40, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831896

RESUMO

BACKGROUND: Mantle cell lymphoma (MCL) is a rare, highly heterogeneous type of B-cell non-Hodgkin's lymphoma. The sumoylation pathway is known to be upregulated in many cancers including lymphoid malignancies. However, little is known about its oncogenic role in MCL. METHODS: Levels of sumoylation enzymes and sumoylated proteins were quantified in MCL cell lines and primary MCL patient samples by scRNA sequencing and immunoblotting. The sumoylation enzyme SAE2 was genetically and pharmacologically targeted with shRNA and TAK-981 (subasumstat). The effects of SAE2 inhibition on MCL proliferation and cell cycle were evaluated using confocal microscopy, live-cell microscopy, and flow cytometry. Immunoprecipitation and orbitrap mass spectrometry were used to identify proteins targeted by sumoylation in MCL cells. RESULTS: MCL cells have significant upregulation of the sumoylation pathway at the level of the enzymes SAE1 and SAE2 which correlated with poor prognosis and induction of mitosis associated genes. Selective inhibition of SAE2 with TAK-981 results in significant MCL cell death in vitro and in vivo with mitotic dysregulation being an important mechanism of action. We uncovered a sumoylation program in mitotic MCL cells comprised of multiple pathways which could be directly targeted with TAK-981. Centromeric localization of topoisomerase 2A, a gene highly upregulated in SAE1 and SAE2 overexpressing MCL cells, was lost with TAK-981 treatment likely contributing to the mitotic dysregulation seen in MCL cells. CONCLUSIONS: This study not only validates SAE2 as a therapeutic target in MCL but also opens the door to further mechanistic work to uncover how to best use desumoylation therapy to treat MCL and other lymphoid malignancies.

16.
Cancer Lett ; 499: 232-242, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33253788

RESUMO

Glioblastoma (GBM) is an incurable brain tumor with inevitable recurrence. This is in part due to a highly malignant cancer stem cell (CSC) subpopulation of tumor cells that is particularly resistant to conventional treatments, including radiotherapy. Here we show that CBL0137, a small molecule anti-cancer agent, sensitizes GBM CSCs to radiotherapy. CBL0137 sequesters the FACT (facilitates chromatin transcription) complex to chromatin, resulting in cytotoxicity preferentially within tumor cells. We show that when combined with radiotherapy, CBL0137 inhibited GBM CSC growth and resulted in more DNA damage in the CSCs compared to irradiation or drug alone. Using an in vivo subcutaneous model, we showed that the frequency of GBM CSCs was reduced when tumors were pretreated with CBL0137 and then exposed to irradiation. Survival studies with orthotopic GBM models resulted in significantly extended survival for mice treated with combinatorial therapy. As GBM CSCs contribute to the inevitable recurrence in patients, targeting them is imperative. This work establishes a new treatment paradigm for GBM that sensitizes CSCs to irradiation and may ultimately reduce tumor recurrence.


Assuntos
Neoplasias Encefálicas/terapia , Carbazóis/administração & dosagem , Quimiorradioterapia/métodos , Glioblastoma/terapia , Recidiva Local de Neoplasia/prevenção & controle , Radiossensibilizantes/administração & dosagem , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Irradiação Craniana , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Cultura Primária de Células , Tolerância a Radiação/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Hematol Oncol ; 14(1): 17, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33451349

RESUMO

BACKGROUND: Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood. METHODS: We performed a large, multi-center retrospective analysis of CLL cases (N = 1286) to correlate nonsynonymous mutations in XPO1 (predominantly E571K or E571G; n = 72) with genetic and epigenetic features contributing to the overall outcomes in these patients. We then established a mouse model with over-expression of wildtype (wt) or mutant (E571K or E571G) XPO1 restricted to the B cell compartment (Eµ-XPO1). Eµ-XPO1 mice were then crossed with the Eµ-TCL1 CLL mouse model. Lastly, we determined crystal structures of XPO1 (wt or E571K) bound to several selective inhibitors of nuclear export (SINE) molecules (KPT-185, KPT-330/Selinexor, and KPT-8602/Eltanexor). RESULTS: We report that nonsynonymous mutations in XPO1 associate with high risk genetic and epigenetic features and accelerated CLL progression. Using the newly-generated Eµ-XPO1 mouse model, we found that constitutive B-cell over-expression of wt or mutant XPO1 could affect development of a CLL-like disease in aged mice. Furthermore, concurrent B-cell expression of XPO1 with E571K or E571G mutations and TCL1 accelerated the rate of leukemogenesis relative to that of Eµ-TCL1 mice. Lastly, crystal structures of E571 or E571K-XPO1 bound to SINEs, including Selinexor, are highly similar, suggesting that the activity of this class of compounds will not be affected by XPO1 mutations at E571 in patients with CLL. CONCLUSIONS: These findings indicate that mutations in XPO1 at E571 can drive leukemogenesis by priming the pre-neoplastic lymphocytes for acquisition of additional genetic and epigenetic abnormalities that collectively result in neoplastic transformation.


Assuntos
Regulação Leucêmica da Expressão Gênica , Carioferinas/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Animais , Epigênese Genética , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estudos Retrospectivos , Transcriptoma , Proteína Exportina 1
18.
Cell Death Dis ; 11(4): 298, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345958

RESUMO

APC/CCdh1 is a ubiquitin ligase with roles in numerous diverse processes, including control of cellular proliferation and multiple aspects of the DNA damage response. Precise regulation of APC/CCdh1 activity is central to efficient cell-cycle progression and cellular homeostasis. Here, we have identified Cdh1 as a direct substrate of the replication stress checkpoint effector kinase Chk1 and demonstrate that Chk1-mediated phosphorylation of Cdh1 contributes to its recognition by the SCFßTRCP ubiquitin ligase, promotes efficient S-phase entry, and is important for cellular proliferation during otherwise unperturbed cell cycles. We also find that prolonged Chk1 activity in late S/G2 inhibits Cdh1 accumulation. In addition to promoting control of APC/CCdh1 activity by facilitating Cdh1 destruction, we find that Chk1 also antagonizes activity of the ligase by perturbing the interaction between Cdh1 and the APC/C. Overall, these data suggest that the rise and fall of Chk1 activity contributes to the regulation of APC/CCdh1 activity that enhances the replication process.


Assuntos
Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/metabolismo , Fase S/genética , Ubiquitina/metabolismo , Células HeLa , Humanos , Fosforilação , Transfecção
19.
Cancer Res ; 80(8): 1693-1706, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32054769

RESUMO

A significant therapeutic challenge for patients with cancer is resistance to chemotherapies such as taxanes. Overexpression of LIN9, a transcriptional regulator of cell-cycle progression, occurs in 65% of patients with triple-negative breast cancer (TNBC), a disease commonly treated with these drugs. Here, we report that LIN9 is further elevated with acquisition of taxane resistance. Inhibiting LIN9 genetically or by suppressing its expression with a global BET inhibitor restored taxane sensitivity by inducing mitotic progression errors and apoptosis. While sustained LIN9 is necessary to maintain taxane resistance, there are no inhibitors that directly repress its function. Hence, we sought to discover a druggable downstream transcriptional target of LIN9. Using a computational approach, we identified NIMA-related kinase 2 (NEK2), a regulator of centrosome separation that is also elevated in taxane-resistant cells. High expression of NEK2 was predictive of low survival rates in patients who had residual disease following treatment with taxanes plus an anthracycline, suggesting a role for this kinase in modulating taxane sensitivity. Like LIN9, genetic or pharmacologic blockade of NEK2 activity in the presence of paclitaxel synergistically induced mitotic abnormalities in nearly 100% of cells and completely restored sensitivity to paclitaxel, in vitro. In addition, suppressing NEK2 activity with two distinct small molecules potentiated taxane response in multiple in vivo models of TNBC, including a patient-derived xenograft, without inducing toxicity. These data demonstrate that the LIN9/NEK2 pathway is a therapeutically targetable mediator of taxane resistance that can be leveraged to improve response to this core chemotherapy. SIGNIFICANCE: Resistance to chemotherapy is a major hurdle for treating patients with cancer. Combining NEK2 inhibitors with taxanes may be a viable approach for improving patient outcomes by enhancing mitotic defects induced by taxanes alone.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Quinases Relacionadas a NIMA/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Paclitaxel/farmacologia , Taxoides/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Supressoras de Tumor/antagonistas & inibidores , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Senescência Celular , Centrossomo/enzimologia , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Xenoenxertos , Humanos , Mitose/genética , Quinases Relacionadas a NIMA/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Paclitaxel/administração & dosagem , Taxa de Sobrevida , Taxoides/administração & dosagem , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Ensaio Tumoral de Célula-Tronco , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
20.
Methods Mol Biol ; 545: 313-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19475398

RESUMO

The Anaphase Promoting Complex (APC) ubiquitin ligase is critical for multiple processes including cell cycle, development, meiosis, and senescence. The importance of regulation of the APC by substrate competitive (pseudosubstrate) inhibitors, such as Emi1 and BubR1, has recently been demonstrated. Substrate competitive inhibitors typically bind to enzymes via the same site as substrates, but by having any combination of increased enzyme affinity and low turnover numbers, are able to "clog" the ability of the enzyme to bind and turnover substrates. For the APC, these pseudosubstrates can both position and block the APC and have been well validated as critical regulators for the APC enzymes.We have found that the substrate competitive mechanism of inhibition is sensitive to the E2 activity driving APC catalyzed ubiquitination events. This chapter provides detailed protocols for multiple in vitro ubiquitination assays of increasing complexity and the use of pseudosubstrate inhibitors in these assays. These assays are instrumental in examining the use of E2 enzymes by the APC and the intimate relationship this has with pseudosubstrate inhibition.


Assuntos
Ciclo Celular/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ubiquitinação/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa