Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Immunol ; 210(8): 1098-1107, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881861

RESUMO

Cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, plays a crucial role in antiviral immunity, and its overactivation induces excess inflammation and tissue damage. Macrophage polarization is critically involved in inflammation; however, the role of cGAS in macrophage polarization during inflammation remains unclear. In this study, we demonstrated that cGAS was upregulated in the LPS-induced inflammatory response via the TLR4 pathway, and cGAS signaling was activated by mitochondria DNA in macrophages isolated from C57BL/6J mice. We further demonstrated that cGAS mediated inflammation by acting as a macrophage polarization switch, which promoted peritoneal macrophages and the bone marrow-derived macrophages to the inflammatory phenotype (M1) via the mitochondrial DNA-mTORC1 pathway. In vivo studies verified that deletion of Cgas alleviated sepsis-induced acute lung injury by promoting macrophages to shift from the M1 phenotype to the M2 phenotype. In conclusion, our study demonstrated that cGAS mediated inflammation by regulating macrophage polarization through the mTORC1 pathway, and it further provided a potential therapeutic strategy for inflammatory diseases, especially sepsis-induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Macrófagos , Alvo Mecanístico do Complexo 1 de Rapamicina , Nucleotidiltransferases , Sepse , Animais , Camundongos , DNA Mitocondrial/metabolismo , Inflamação , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fenótipo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
2.
Neurobiol Dis ; 192: 106432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331352

RESUMO

The aim of this study was to explore the role and mechanism of the olfactory bulb (OB) microglial P2X7 receptor (P2X7R) in allergic rhinitis (AR)-related depression, with the objective of identifying a potential clinical target. An AR mouse model was induced using ovalbumin (OVA), while chronic stress was employed to induce depression. The study used P2X7R-specific antagonists and OB microglia-specific P2X7R knockdown mice as crucial tools. The results showed that mice in the OVA + stress group exhibited more pronounced depressive-like phenotypes. Furthermore, there was an observed increase in microglial activation in the OB, followed by a rise in the level of inflammation. The pharmacological inhibition of P2X7R significantly mitigated the depression-like phenotype and the OB inflammatory response in OVA + stress mice. Notably, the specific knockdown of microglial P2X7R in the OB resulted in a similar effect, possibly linked to the regulation of IL-1ß via the "ATP-P2X7R-Caspase 1" axis. These findings collectively demonstrate that microglial P2X7R in the OB acts as a direct effector molecule in AR-related depression, and its inhibition may offer a novel strategy for clinical prevention and treatment.


Assuntos
Microglia , Rinite Alérgica , Animais , Camundongos , Depressão , Bulbo Olfatório , Receptores Purinérgicos P2X7/genética
3.
EMBO Rep ; 23(11): e54569, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36178239

RESUMO

Tripartite motif protein (TRIM) 50 is a new member of the tripartite motif family, and its biological function and the molecular mechanism it is involved in remain largely unknown. The NOD-like receptor family protein (NLRP)3 inflammasome is actively involved in a wide array of biological processes while mechanisms of its regulation remain to be fully clarified. Here, we demonstrate the role of TRIM50 in NLRP3 inflammasome activation. In contrast to the conventional E3 ligase functions of TRIM proteins, TRIM50 mediates direct oligomerization of NLRP3, thereby suppressing its ubiquitination and promoting inflammasome activation. Mechanistically, TRIM50 directly interacts with NLRP3 through its RING domain and induces NLRP3 oligomerization via its coiled-coil domain. Finally, we show that TRIM50 promotes NLRP3 inflammasome-mediated diseases in mice. We thus reveal a novel regulatory mechanism of NLRP3 via TRIM50 and suggest that modulating TRIM50 might represent a therapeutic strategy for NLRP3-dependent pathologies.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas com Motivo Tripartido , Animais , Camundongos , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
J Environ Manage ; 360: 121226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795468

RESUMO

In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.


Assuntos
Microalgas , Eliminação de Resíduos Líquidos , Águas Residuárias , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Biomassa , Metais Pesados , Biodegradação Ambiental
5.
Water Sci Technol ; 80(6): 1134-1144, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31799957

RESUMO

A two-phase anaerobic system comprised of upflow anaerobic sludge bed (UASB) reactor for hydrogen production and internal circulation reactor (IC) for methane production was proposed and investigated at laboratory scale and mesophilic temperature (35 °C). Hydrogen was efficiently produced from the UASB with the highest production rate of 3.00 ± 0.04 L · L-1 reactor · d-1 at optimum hydraulic retention time (HRT) of 6 h and in the IC, methane was also produced from residual organic matter and soluble metabolite products (SMP) with a production rate of 2.54 ± 0.04 L · L-1 reactor · d-1 at optimum HRT of 15 h. Finally, system HRT of 21 h was determined to be the optimum HRT at which energy conversion efficiency increased from 9.6 ± 0.1% (hydrogen only production) to 72.4 ± 2.5% (hydrogen and methane coproduction) and system chemical oxygen demand (COD) removal reached up to the high level of 90.1 ± 2.1%.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Leitos , Reatores Biológicos , Medicina Herbária , Hidrogênio , Metano , Eliminação de Resíduos Líquidos
6.
Water Sci Technol ; 73(1): 130-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744943

RESUMO

An upflow anaerobic sludge bed (UASB) system with sludge immobilized on granular activated carbon was developed for fermentative hydrogen production continuously from herbal medicine wastewater at various organic loading rates (8-40 g chemical oxygen demand (COD) L(-1) d(-1)). The maximum hydrogen production rate reached 10.0 (±0.17) mmol L(-1) hr(-1) at organic loading rate of 24 g COD L(-1) d(-1), which was 19.9% higher than that of suspended sludge system. The effluents of hydrogen fermentation were used for continuous methane production in the subsequent UASB system. At hydraulic retention time of 15 h, the maximum methane production rate of 5.49 (±0.03) mmol L(-1) hr(-1) was obtained. The total energy recovery rate by co-production of hydrogen and methane was evaluated to be 7.26 kJ L(-1) hr(-1).


Assuntos
Biocombustíveis , Reatores Biológicos , Hidrogênio/metabolismo , Metano/metabolismo , Águas Residuárias , Fermentação , Medicina Herbária , Esgotos
7.
Cell Death Differ ; 31(6): 722-737, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594443

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a key innate immune sensor that recognizes cytosolic DNA to induce immune responses against invading pathogens. The role of cGAS is conventionally recognized as a nucleotidyltransferase to catalyze the synthesis of cGAMP upon recognition of cytosolic DNA, which leads to the activation of STING and production of type I/III interferon to fight against the pathogen. However, given that hepatocytes are lack of functional STING expression, it is intriguing to define the role of cGAS in hepatocellular carcinoma (HCC), the liver parenchymal cells derived malignancy. In this study, we revealed that cGAS was significantly downregulated in clinical HCC tissues, and its dysregulation contributed to the progression of HCC. We further identified cGAS as an immune tyrosine inhibitory motif (ITIM) containing protein, and demonstrated that cGAS inhibited the progression of HCC and increased the response of HCC to sorafenib treatment by suppressing PI3K/AKT/mTORC1 pathway in cellular and animal models. Mechanistically, cGAS recruits SH2-containing tyrosine phosphatase 1 (SHP1) via ITIM, and dephosphorylates p85 in phosphatidylinositol 3-kinase (PI3K), which leads to the suppression of AKT-mTORC1 pathway. Thus, cGAS is identified as a novel tumor suppressor in HCC via its function independent of its conventional role as cGAMP synthase, which indicates a novel therapeutic strategy for advanced HCC by modulating cGAS signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nucleotidiltransferases , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Nucleotidiltransferases/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Animais , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Masculino , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Camundongos Nus , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleotídeos Cíclicos/metabolismo
8.
Water Sci Technol ; 68(2): 494-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23863446

RESUMO

Molasses wastewater contains large amounts of glucose, and it can provide enough energy for microbial decomposition. The microbial fuel cell (MFC) in this study was demonstrated to be able to treat real wastewater with the benefit of harvesting electricity energy. Efficient operation of this MFC requires a molasses wastewater and preferably an inexpensive anode electrolyte. The results from a batch of experiments showed that molasses wastewater could not only serve as the electron acceptor in anode, but also generate electricity stably. A maximum voltage output of 514.5 mV and a maximum power density of 65.82 mW/m(2) were recorded at external resistance of 1,000 Ω. The MFC not only effectively dealt with the molasses wastewater, the chemical oxygen demand removal rate is 81.22%, but also had a significant effect in the processing of analog silver wastewater. At the end of the experiment, after disassembling the device, silver precipitation was found stacked on the cathode carbon paper electrode, and some black sediment was found at the side of the proton membrane anode.


Assuntos
Fontes de Energia Bioelétrica , Melaço , Análise da Demanda Biológica de Oxigênio , Conservação dos Recursos Naturais , Eletricidade , Eletrodos , Resíduos Industriais , Esgotos , Nitrato de Prata/química , Eliminação de Resíduos Líquidos , Águas Residuárias
9.
Front Immunol ; 14: 1290414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169949

RESUMO

The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Humanos , Carcinogênese , Transformação Celular Neoplásica , Imunidade nas Mucosas , Ácidos e Sais Biliares
10.
Oncogenesis ; 11(1): 40, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858925

RESUMO

Ras-related C3 botulinum toxin substrate 1 (RAC1) overexpressiosn and hyperactivation are correlated with aggressive growth and other malignant characteristics in a wide variety of cancers including hepatocellular carcinoma (HCC). However, the regulatory mechanism of RAC1 expression and activation in HCC is not fully understood. Here, we demonstrated that E3 ubiquitin ligase MG53 (also known as tripartite motif 72, TRIM72) acted as a direct inhibitor of RAC1, and it catalyzed the ubiquitination of RAC1 and further inhibited RAC1 activity in HCC cells. Mechanistically, MG53 directly bound with RAC1 through its coiled-coil domain and suppressed RAC1 activity by catalyzing the Lys48 (K48)-linked polyubiquitination of RAC1 at Lys5 residue in HCC cells. We further demonstrated that MG53 significantly suppressed the malignant behaviors of HCC cells and enhanced the chemosensitivity of HCC cells to sorafenib treatment by inhibiting RAC1-MAPK signaling axis. In summary, we identified MG53 as a novel RAC1 inhibitor and tumor suppressor in HCC, and it suppressed HCC progression by inducing K48-linked polyubiquitination of RAC1 and further inhibiting the RAC1-MAPK signaling. Altogether, our investigation provided a new therapeutic strategy for RAC1 overactivated tumors by modulating MG53.

11.
Cancer Lett ; 526: 180-192, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762994

RESUMO

Hepatocellular carcinoma (HCC), a heterogeneous cancer with high mortality, is resistant to single targeted therapy; thus, combination therapy based on synthetic lethality is a promising therapeutic strategy for HCC. Poly (adenosine diphosphate [ADP]-ribose) polymerase 1 (PARP1) is the most recognized target for synthetic lethality; however, the therapeutic effect of PARP1 inhibition on HCC is disappointing. Therefore, exploring new synthetic lethal partners for the efficient manipulation of HCC is urgently required. In this study, we identified Src and PARP1 as novel synthetic lethal partners, and the combination therapy produced significant anti-tumor effects without causing obvious side effects. Mechanistically, Src interacted with PARP1 and phosphorylated PARP1 at the Y992 residue, which further mediated resistance to PARP1 inhibition. Overall, this study revealed that Src-mediated PARP1 phosphorylation induced HCC resistance to PARP1 inhibitors and indicated a therapeutic window of the Y992 phosphorylation of PARP1 for HCC patients. Moreover, synthetic lethal therapy by co-targeting PARP1 and Src have the potential to broaden the strategies for HCC and might benefit HCC patients with high Src activation and resistance to PARP1 inhibitors alone.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Dasatinibe/administração & dosagem , Dasatinibe/farmacologia , Dimetil Sulfóxido/administração & dosagem , Dimetil Sulfóxido/farmacologia , Modelos Animais de Doenças , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Fosforilação , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra , Quinases da Família src/metabolismo
12.
RSC Adv ; 11(10): 5601-5608, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35423110

RESUMO

Three anaerobic packed bed reactors (APBR) packed with activated carbon, maifanite and tourmaline as support material were continuously operated for 165 days to generate hydrogen from traditional Chinese medicine wastewater at different organic loading rates (OLR) from 15.2 to 91.3 g COD L-1 d-1 by changes of hydraulic retention time (HRT) varying from 24 to 6 h. The best performance with hydrogen production rate (HPR) of 7.92 ± 0.27 mmol L-1 h-1 and hydrogen yield (HY) of 3.50 ± 0.09 mmol g-1 COD was achieved for the reactor with tourmaline at OLR of 60.8 g COD L-1 d-1 (HRT = 6 h), followed by activated carbon and maifanite. The main metabolic products for each reactor were found to be acetate and butyrate in the effluent with pH range of 5.6-6.4 and microbial analysis revealed that the dominant communities in all cultures were C. carboxidivoran and C. butyricum, responsible for acetate and butyrate production respectively.

13.
mSphere ; 6(5): e0075221, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643417

RESUMO

During the progression of coronavirus disease 2019 (COVID-19), immune response and inflammation reactions are dynamic events that develop rapidly and are associated with the severity of disease. Here, we aimed to develop a predictive model based on the immune and inflammatory response to discriminate patients with severe COVID-19. COVID-19 patients were enrolled, and their demographic and immune inflammatory reaction indicators were collected and analyzed. Logistic regression analysis was performed to identify the independent predictors, which were further used to construct a predictive model. The predictive performance of the model was evaluated by receiver operating characteristic curve, and optimal diagnostic threshold was calculated; these were further validated by 5-fold cross-validation and external validation. We screened three key indicators, including neutrophils, eosinophils, and IgA, for predicting severe COVID-19 and obtained a combined neutrophil, eosinophil, and IgA ratio (NEAR) model (NEU [109/liter] - 150×EOS [109/liter] + 3×IgA [g/liter]). NEAR achieved an area under the curve (AUC) of 0.961, and when a threshold of 9 was applied, the sensitivity and specificity of the predicting model were 100% and 88.89%, respectively. Thus, NEAR is an effective index for predicting the severity of COVID-19 and can be used as a powerful tool for clinicians to make better clinical decisions. IMPORTANCE The immune inflammatory response changes rapidly with the progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is responsible for clearance of the virus and further recovery from the infection. However, the intensified immune and inflammatory response in the development of the disease may lead to more serious and fatal consequences, which indicates that immune indicators have the potential to predict serious cases. Here, we identified both eosinophils and serum IgA as prognostic markers of COVID-19, which sheds light on new research directions and is worthy of further research in the scientific research field as well as clinical application. In this study, the combination of NEU count, EOS count, and IgA level was included in a new predictive model of the severity of COVID-19, which can be used as a powerful tool for better clinical decision-making.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Regras de Decisão Clínica , Índice de Gravidade de Doença , Adulto , Idoso , Biomarcadores/sangue , COVID-19/sangue , Tomada de Decisão Clínica/métodos , Progressão da Doença , Eosinófilos/metabolismo , Feminino , Humanos , Imunoglobulina A/sangue , Inflamação/sangue , Inflamação/diagnóstico , Inflamação/virologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Valor Preditivo dos Testes , Prognóstico , Sensibilidade e Especificidade
14.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762328

RESUMO

Cyclic GMP-AMP synthase (cGAS) functions as an essential DNA sensor, which senses the cytoplasmic double-stranded DNA and activates the antiviral response. However, the posttranslational modification of cGAS remains to be fully understood and whether it has arginine methylation modification remains unknown. Here, we identified protein arginine methyltransferase 5 (PRMT5) as a direct binding partner of cGAS, and it catalyzed the arginine symmetrical dimethylation of cGAS at the Arg124 residue. Further investigation demonstrated that methylation of cGAS by PRMT5 attenuated cGAS-mediated antiviral immune response by blocking the DNA binding ability of cGAS. Oral administration of PRMT5 inhibitors significantly protected mice from HSV-1 infection and prolonged the survival time of these infected mice. Therefore, our findings revealed an essential regulatory effect of PRMT5 on cGAS-mediated antiviral immune response and provided a promising potential antiviral strategy by modulating PRMT5.


Assuntos
Herpes Simples , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Antivirais/farmacologia , Arginina/metabolismo , Herpes Simples/genética , Imunidade , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética
15.
Cell Death Dis ; 11(3): 174, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144252

RESUMO

Nucleotide binding oligomerization domain 2 (NOD2) is a recognized innate immune sensor which can initiate potent immune response against pathogens. Many innate immune sensors have been reported to be of great importance in carcinogenesis. However, the role of NOD2 in cancer is not well understood. Here we investigated the role of NOD2 in the development of hepatocellular carcinoma (HCC). We demonstrated that NOD2 deficiency promoted hepatocarcinogenesis in N-nitrosodiethylamine (DEN)/carbon tetrachloride (CCl4) induced HCC mice model and xenograft tumor model. In vitro investigation showed that NOD2 acted as a tumor suppressor and inhibited proliferation, colony formation and invasion of HCC cells. Clinical investigation showed that NOD2 expression was completely lost or significantly downregulated in clinical HCC tissues, and loss of NOD2 expression was significantly correlated with advanced disease stages. Further investigation showed that NOD2 exerted its anti-tumor effect through activating adenosine 5'-monophosphate (AMP) -activated protein kinase (AMPK) signaling pathway, and NOD2 significantly enhanced the sensitivity of HCC cells to sorafenib, lenvatinib and 5-FU treatment through activating AMPK pathway induced apoptosis. Moreover, we demonstrated that NOD2 activated AMPK pathway by directly binding with AMPKα-LKB1 complex, which led to autophagy-mediated apoptosis of HCC cells. Altogether, this study showed that NOD2 acted as a tumor suppressor as well as a chemotherapeutic regulator in HCC cells by directly activating AMPK pathway, which indicated a potential therapeutic strategy for HCC treatment by upregulating NOD2-AMPK signaling axis.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/farmacologia , Sorafenibe/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos
16.
J Mol Med (Berl) ; 98(2): 221-232, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31872284

RESUMO

NOD1 is an innate immune sensor playing an important role in fighting against infection. However, its role in cancer is far from being clarified, and whether NOD1 plays a role in the progression of hepatocellular carcinoma (HCC) has never been reported. Here, we found that NOD1 expression was significantly decreased in hepatocellular carcinoma tissues and overexpression of NOD1 significantly inhibited tumorigenesis in vivo. In vitro experiments demonstrated that NOD1 inhibited proliferation of HCC cells by directly targeting proto-oncogene SRC and inducing cell cycle arrest at G1 phase. Further investigation showed that NOD1 exerted its antitumor effect by inhibiting SRC activation and further suppressing SRC/MAPK axis in hepatocellular carcinoma cells. Moreover, NOD1 dramatically enhanced the response of HCC cells to chemotherapy via inhibition of SRC-MAPK axis both in vitro and in vivo. Collectively, these data indicated that NOD1 suppressed proliferation and enhanced response to sorafenib or 5-FU treatment through inhibiting SRC-MAPK axis in hepatocellular carcinoma. KEY MESSAGES: NOD1 significantly inhibited tumorigenesis of HCC in cellular and animal models. NOD1 inhibited proliferation of HCC cells by inducing cell cycle arrest. NOD1 exerted its antitumor effect on HCC by directly interacting with SRC and inhibiting SRC-MAPK axis. NOD1 significantly enhanced the chemosensitivity of HCC cells to chemotherapeutic drugs.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos Nus , Proteína Adaptadora de Sinalização NOD1/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proto-Oncogene Mas , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Quinases da Família src/metabolismo
17.
Cell Death Differ ; 27(6): 1819-1831, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31802035

RESUMO

Aberrant Src kinase activity is known to be involved in a variety of human malignancies, whereas the regulatory mechanism of Src has not been completely clarified. Here, we demonstrated that tripartite motif containing 7 (TRIM7) directly interacted with Src, induced Lys48-linked polyubiquitination of Src and reduced the abundance of Src protein in hepatocellular carcinoma (HCC) cells. We further identified TRIM7 as a tumor suppressor in HCC cells through its negative modulation of the Src-mTORC1-S6K1 axis in vivo and in vitro in several HCC models. Moreover, we verified the dysregulated expression of TRIM7 in clinical liver cancer tissues and its negative correlation with Src protein in clinical HCC specimens. Overall, we demonstrated that TRIM7 suppressed HCC progression through its direct negative regulation of Src and modulation of the Src-mTORC1-S6K1 axis; thus, we provided a novel insight into the development of HCC and defined a promising therapeutic strategy for cancers with overactive Src by modulating TRIM7.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Quinases da Família src/metabolismo , Animais , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Ligação Proteica
18.
Bioresour Technol ; 276: 65-73, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30611088

RESUMO

This study investigated the feasibility of dry anaerobic digestion using beer lees as substrate and the effect of cow manure-derived biochar addition on dry anaerobic digestion performance at mesophilic and thermophilic temperature, respectively. With TS content of 25%, maximum cumulative methane production and yield were achieved to be 5230 ±â€¯91 mL d-1 and 220.1 ±â€¯7.7 mL g-1 VS at mesophilic condition and 7386 ±â€¯134 mL d-1 and 310.4 ±â€¯9.2 mL g-1 VS at thermophilic condition in the control cultures. The biochar addition has a positive effect in improving dry anaerobic digestion performance. The maximum cumulative methane production and yield in the cultures with 10 g L-1 biochar were substantially improved by 82.9% and 82.6% at mesophilic condition and 47.2% and 46.8% at mesophilic condition when compared to the control.


Assuntos
Cerveja , Carvão Vegetal/metabolismo , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Esterco , Metano/biossíntese , Temperatura
19.
Biochim Biophys Acta Mol Cell Res ; 1866(9): 1412-1420, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31176697

RESUMO

Src is a known proto-oncogene and its aberrant activity is involved in a variety of cancers, including ovarian cancer, whereas the regulatory mechanism of Src has not been fully clarified. In this study, we identified tripartite motif-containing (TRIM) 50 as a novel negative regulator of Src protein. Our data showed that TRIM50 directly interacted with SH3 domain of Src via its B-box domain; and TRIM50 reduced Src stability by inducing RING domain-dependent K48-linked poly-ubiquitous modification. We further demonstrated that TRIM50 acted as a tumor suppressor in ovarian cancer cells by its negative regulation of Src protein. In vivo animal model verified that TRIM50 inhibited the xenograft tumor growth of ovarian cancer by suppressing Src protein. Clinical investigation showed that expression of TRIM50 in clinical specimens was inversely correlated with the clinical stages, pathology grades and lymph node metastatic status of the patients, which indicated the involvement of aberrant TRIM50 expression in disease progression. Further analysis verified the negative correlation between TRIM50 and Src expression in clinical specimens. Altogether, we identified TRIM50 as a novel suppressor of Src protein, and demonstrated that TRIM50 inhibited ovarian cancer progression by targeting Src and reducing its activity, which provided a novel therapeutic strategy for Src over-activated cancers by positive regulation of TRIM50.


Assuntos
Progressão da Doença , Neoplasias Ovarianas/tratamento farmacológico , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia , Quinases da Família src/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Linfonodos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Proto-Oncogene Mas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
20.
Cell Death Dis ; 9(6): 608, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789583

RESUMO

Tripartite motif-containing 50 (TRIM50) belongs to the tripartite motif (TRIM) protein family, which has been implicated in the pathogenesis of multiple cancers. However, the role of TRIM50 in hepatocellular carcinoma (HCC) remains to be clarified. Here we showed that TRIM50 expression was significantly decreased in liver cancer tissues compared with corresponding non-cancerous liver tissues, and its decreased expression was significantly correlated with advanced disease progression. Gain-of-function assay by exogenous overexpression of TRIM50 in HCC cells showed that proliferation, colony formation, migration and invasion of HCC cells were significantly inhibited, whereas loss-of-function assay by TRIM50 knockdown showed that these malignant behaviors of HCC cells were significantly increased. Further investigation showed that TRIM50 could directly bind with SNAIL and induced K-48 linked poly-ubiquitous degradation of SNAIL protein, which further reversed SNAIL-mediated epithelial-to-mesenchymal transition (EMT) process of HCC cells. In vivo assay by xenograft tumor model verified the antitumor effect of TRIM50 on HCC. Taken together, these results showed that TRIM50 acted as a tumor suppressor in HCC cells by directly targeting SNAIL and reversing EMT, which further indicated that positive modulation of TRIM50 might be a novel therapeutic strategy for SNAIL overexpressed HCC cells.


Assuntos
Carcinoma Hepatocelular/patologia , Progressão da Doença , Neoplasias Hepáticas/patologia , Proteólise , Fatores de Transcrição da Família Snail/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Anoikis , Antineoplásicos/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Lisina/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Invasividade Neoplásica , Poliubiquitina/metabolismo , Ensaio Tumoral de Célula-Tronco , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa