RESUMO
The interfacial effect is important for anodes of transition metal dichalcogenides (TMDs) to achieve superior lithium-ion storage performance. In this paper, a MoS2/FeS2 heterojunction is synthesized by a simple hydrothermal reaction to construct the interface effect, and the heterostructure introduces an inherent electric field that accelerates the de-embedding process of lithium ions, improves the electron transfer capability, and effectively mitigates volume expansion. XPS analysis confirms evident chemical interaction between MoS2 and FeS2 via an interfacial covalent bond (Mo-S-Fe). This MoS2/FeS2 anode shows a distinct interfacial effect for efficient interatomic electron migration. The electrochemical performance demonstrated that the discharge capacity can reach up to 1217.8 mA h g-1 at 0.1 A g-1 after 200 cycles, with a capacity retention rate of 72.9%. After 2000 cycles, the capacity retention is about 61.6% at 1.0 A g-1, and the discharge capacity can still reach 638.9 mA h g-1. Electrochemical kinetic analysis indicated an enhanced pseudocapacitance contribution and that the MoS2/FeS2 had sufficient adsorption of lithium ions. This paper therefore argues that this interfacial engineering is an effective solution for designing sulfide-based anodes with good electrochemical properties.
RESUMO
Highly integrated energy systems are on the rise due to increasing global demand. To capture the underlying physics of such interdisciplinary systems, we need a modern framework that unifies all forms of energy. Here, we apply modified Lagrangian mechanics to the description of multi-energy systems. Based on the minimum entropy production principle, we revisit fluid mechanics in the presence of both mechanical and thermal dissipations and propose using exergy flow as the unifying Lagrangian across different forms of energy. We illustrate our theoretical framework by modeling a one-dimensional system with coupled electricity and heat. We map the exergy loss rate in real space and obtain the total exergy changes. Under steady-state conditions, our theory agrees with the traditional formula but incorporates more physical considerations such as viscous dissipation. The integral form of our theory also allows us to go beyond steady-state calculations and visualize the local, time-dependent exergy flow density everywhere in the system. Expandable to a wide range of applications, our theoretical framework provides the basis for developing versatile models in integrated energy systems.
RESUMO
Heteroatom doping is considered an effective method to substantially improve the electrochemical performance of Ti3C2Tx MXene for supercapacitors. Herein, a facile and controllable strategy, which combines heat treatment with phosphorous (P) doping by using sodium phosphinate (NaH2PO2) as a phosphorus source, is used to modify Ti3C2Tx. The intercalated ions from NaH2PO2 act as "pillars" to expand the interlayer space of MXene, which is conducive to electrolyte ion diffusion. On the other hand, P doping tailors the surface electronic state of MXene, optimizing electronic conductivity and reducing the free energy of H+ diffusion on the MXene surface. Meanwhile, P sites with lower electronegativity owning good electron donor characteristics are easy to share electrons with H+, which is beneficial to charge storage. Moreover, the adopted heat treatment replaces -F terminations with O-containing groups, which enhances the hydrophilicity and provides sufficient active sites. The change in surface functional groups increases the content of high valence-stated Ti with a high electrochemical activity that can accommodate more electrons during discharge. Synergistic modification of interlayer structure and chemical state improves the possibility of Ti3C2Tx for accommodating more H+ ions. Consequently, the modified electrode delivers a specific capacitance of 510 F g-1 at 2 mV s-1, and a capacitance retention of 90.2% at 20 A g-1 after 10,000 cycles. The work provides a coordinated strategy for the rational design of high-capacitance Ti3C2Tx MXene electrodes.
Assuntos
Líquidos Corporais , Titânio , Difusão , FósforoRESUMO
MXene, a new intercalation pseudocapacitive electrode material, possesses a high theoretical capacitance for supercapacitor application. However, limited accessible interlayer space and active sites are major challenges to achieve this high capacitance in practical application. In order to stimulate the electrochemical activity of MXene to a greater extent, herein, a method of hydrothermal treatment in NaOH solution with reducing reagent-citric acid is first proposed. After this treatment, the gravimetric capacitance of MXene exhibits a significant enhancement, about 250% of the original value, reaching 543 F g-1 at 2 mV s-1. This improved electrochemical performance is attributed to the tailoring of an interlayer structure and surface chemistry state. An expanded and homogenized interlayer space is created, which provides enough space for electrolyte ions storage. The -F terminations are replaced with O-containing groups, which enhances the hydrophilicity, facilitating the electrolyte's accessibility to MXene's surface, and makes MXene show stronger adsorption for electrolyte ion-H+, providing sufficient electrochemical active sites. The change in terminations further leads to the increase in Ti valence, which becomes more prone to reduction. This work establishes full knowledge of the rational MXene design for electrochemical energy storage applications.
RESUMO
The rational design of the heterogeneous interfaces enables precise adjustment of the electronic structure and optimization of the kinetics for electron/ion migration in energy storage materials. In this work, the built-in electric field is introduced to the iron-based anode material (Fe2O3@TiO2) through the well-designed heterostructure. This model serves as an ideal platform for comprehending the atomic-level optimization of electron transfer in advanced lithium-ion batteries (LIBs). As a result, the core-shell Fe2O3@TiO2 delivers a remarkable discharge capacity of 1342 mAh g-1 and an extraordinary capacity retention of 82.7% at 0.1 A g-1 after 300 cycles. Fe2O3@TiO2 shows an excellent rate performance from 0.1 A g-1 to 4.0 A g-1. Further, the discharge capacity of Fe2O3@TiO2 reached 736 mAh g-1 at 1.0 A g-1 after 2000 cycles, and the corresponding capacity retention is 83.62%. The heterostructure forms a conventional p-n junction, successfully constructing the built-in electric field and lithium-ion reservoir. The kinetic analysis demonstrates that Fe2O3@TiO2 displays high pseudocapacitance behavior (77.8%) and fast lithium-ion reaction kinetics. The capability of heterointerface engineering to optimize electrochemical reaction kinetics offers novel insights for constructing high-performance iron-based anodes for LIBs.
RESUMO
Flexible supercapacitors have attracted great interest as energy storage devices because of their promise in applications such as wearable and smart electronic devices. Herein, a novel flexible supercapacitor electrode based on gallium nitride nanowire (GaN NW)/graphite paper (GP) nanocomposites is reported. The outstanding electrical conductivities of the GaN NW (6.36 × 102 S m-1 ) and GP (7.5 × 104 S m-1 ) deliver a synergistically enhanced electrochemical performance that cannot be achieved by either of the components alone. The composite electrode exhibits excellent specific capacitance (237 mF cm-2 at 0.1 mA cm-2 ) and outstanding cycling performance (98% capacitance retention after 10 000 cycles). The flexible symmetric supercapacitor also manifests high energy and power densities (0.30 mW h cm-3 and 1000 mW cm-3 ). These findings demonstrate that the GaN/GP composite electrode has significant potential as a candidate for the flexible energy storage devices.
RESUMO
In this study, we developed a novel "see-and-treat" theranostic system named "surface-enhanced Raman scattering (SERS) imaging-guided real-time photothermal therapy" for accurate cancer detection and real-time cancer cell ablation using the same Raman laser. Facilely synthesized polydopamine-encapsulated gold nanorods (AuNRs), which possess excellent biocompatibility and enhanced stability, were used as multifunctional agents. Under near-infrared (NIR) laser irradiation, polydopamine-encapsulated AuNRs show strong SERS effect and high photothermal conversion efficiency simultaneously. After immobilization of antibodies (anti-EpCAM), polydopamine-encapsulated gold nanorods show high specificity to target cancer cells. Tumor margins could be distinguished facilely by a quick SERS imaging process, which was confirmed by H&E staining results. By focusing the exciting light on detected cancer cells for a prolonged time, cancer cells could be ablated immediately without the need of other procedure. This "see-and-treat" theranostic strategy combining SERS imaging and real-time photothermal therapy using the same Raman laser is proposed for the first time. Experimental results confirmed the feasibility of our "SERS imaging-guided real-time photothermal therapy system." This novel theranostic strategy can significantly improve the efficiency of cancer therapy in clinical application, allowing the effective ablation of cancer cells with no effects on surrounding healthy tissues. Graphical abstract á .
Assuntos
Ouro/química , Indóis/administração & dosagem , Nanotubos/química , Neoplasias/patologia , Polímeros/administração & dosagem , Análise Espectral Raman/métodos , HumanosRESUMO
The efficient isolation and the accurate phenotype discrimination of circulating tumor cells (CTCs) are expected to provide much valuable information for the understanding of tumor metastasis and to play an important role in personalized treatment of cancer patients in the future. In this study, we developed a novel, rapid, and simple method for efficient capture and accurate identification of CTCs using aptamer conjugated magnetic beads and surface-enhanced Raman scattering (SERS) imaging technique. Using aptamer conjugated magnetic beads, rare target cancer cells can be captured efficiently from buffer and whole blood sample with capture efficiency of 73 % and 55 %, respectively. Meanwhile, captured cancer cells were labeled by specific SERS probes and can be identified readily and accurately by SERS imaging technique. Results of our experiment demonstrate the potential feasibility of aptamer conjugated magnetic beads coupled with SERS imaging technique for the efficient capture and accurate discrimination of CTCs in clinical whole blood sample. Graphical Abstract Schematic Representation of CTCs Capture and Identification Using Apt-MBs and SERS Imaging.
Assuntos
Aptâmeros de Nucleotídeos/química , Separação Celular/métodos , Imãs/química , Neoplasias/sangue , Células Neoplásicas Circulantes/patologia , Análise Espectral Raman/métodos , Contagem de Células , Linhagem Celular Tumoral , Humanos , Campos MagnéticosRESUMO
The benefits of tea consumption as a special diet for health and life satisfaction have attracted considerable attention; however, it is not clear whether the effect of tea consumption on self-rated health (SRH) and self-rated life satisfaction (SRL) is equal among all types of tea, and it is unclear whether these associations are impacted by gender and age in older adults. This study aimed to examine the associations between tea consumption, SRH and SRL in older adults and to explore the role of gender and age. Participants aged 65-105 (N = 78,345) were interviewed in the years 2002, 2005, 2008, 2011, 2014 and 2018 in the Chinese Longitudinal Healthy Longevity Study (CLHLS). Generalized estimation equations (GEE) with the identity link function were adopted to estimate the cross-sectional associations of tea consumption with SRH and SRL. GEE with the logic link function were used to explore the longitudinal associations of tea consumption with SRH decline and SRL decline. Drinking tea at present, especially scented tea, was significantly associated with better SRH and SRL for older adults. Male participants benefited more from tea consumption than females, and the protective effect of green tea consumption on improving SRH and SRL in males was evident. Older adults aged 90-105 with current tea consumption daily had better SRH and reduced risk of SRL decline.
RESUMO
The effects of tea consumption on delaying aging and the onset of age-related disabilities have been reported; however, it is unclear whether these benefits are impacted by genes. This study aimed to examine the associations between tea consumption and activities of daily living (ADL) and explore the role of genetic factors. Data from 46,487 older adults aged 64-105 who participated in at least one data wave of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) conducted in 2002, 2005, 2008, 2011, 2014, and 2018 were analyzed. Genetic data were produced using the Affymetrix Axiom™myDesign™ (384-format) Human Genotyping Array. The generalized estimation equation and multiple logistic regression models were constructed to examine the effects of tea consumption, polygenic risk score, and their interactions on ADL. Tea consumption was related to reduced ADL decline-the effect was statistically significant among men but not women. A significant interaction between tea consumption and polygenic risk score (PRS) was observed. Tea consumption was associated with a decreased risk of ADL disability only among individuals with a low PRS. These findings indicate that tea consumption plays a role in preventing disability in older adults with low polygenic risk.
RESUMO
Zinc oxide (ZnO) shows great potential as an anode material for advanced energy storage devices owing to its good structural stability and low cost. However, its inferior cycling capacity seriously restricts its practical application. In this work, a pre-lithiation strategy is adopted to construct pre-lithiated ZnO (Li-ZnO) via the facile solid-state reaction method. This well-designed Li-ZnO is polycrystalline, consisting of fine particles. XPS analysis and Raman results confirm the successful pre-lithiation strategy. The pre-lithiation strategy increases the electronic conductivity of Li-ZnO without further carbon coating and suppresses the volume expansion during the electrochemical reaction. As a result, 5 mol% Li-ZnO displays good reversible capacity with a specific capacity of 639 mA h g-1 after 200 cycles at 0.1 A g-1. After 1440 cycles at 1.0 A g-1, the capacity retention is 380 mA h g-1. The pseudocapacitance contribution can reach up to 72.5% at 1.0 mV s-1. Electrochemical kinetic analysis shows that this pre-lithiation strategy can accelerate the lithium-ion diffusion and charge transfer kinetics of the Li-ZnO anode and suppress the pulverization of the electrochemical reaction. This study demonstrates the necessity of developing new anode materials with good cycling stability via this pre-lithiation strategy.
RESUMO
Tailoring the interfacial interaction in SiC-based anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage. In this paper, atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene (NG) on SiC (NG@SiC). This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction, making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration. Both density functional theory (DFT) analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds, enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation. As a proof-of-concept study, this well-designed NG@SiC anode shows good reversible capacity (1197.5 mAh g-1 after 200 cycles at 0.1 A g-1) and cycling durability with 76.6% capacity retention at 447.8 mAh g-1 after 1000 cycles at 10.0 A g-1. As expected, the lithium-ion full cell (LiFePO4/C//NG@SiC) shows superior rate capability and cycling stability. This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond.
RESUMO
Multipath data transmission is a key problem that needs to be solved urgently in wireless sensor networks. In this paper, sensor node failure, link failure, energy exhaustion, and external interference affect the stability and reliability of network data transmission. A multipath transmission strategy for wireless sensor networks based on improved shuffled frog leaping algorithm is proposed. A mathematical model of multipath transmission in wireless sensor networks is established. In the shuffled frog leaping algorithm, combined with the transition probability in the particle swarm optimization algorithm, random individuals in the subgroup are introduced to assist the search when updating the frog individual position, which improves the algorithm's ability to jump out of the local optimum and improves the quality of the optimization algorithm solution. The model is applied to multipath transmission in wireless sensor networks. Then, the shuffled frog leaping algorithm is used to update, divide, and reorganize the sensor nodes to select the optimal node to establish the optimal transmission path and improve the stability and reliability of the network. Simulation experiments show that the algorithm in this paper can ensure the reliability of data transmission, reduce the network packet loss rate and network energy consumption, and reduce the average delay of data transmission.
Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Conservação de Recursos Energéticos , Humanos , Reprodutibilidade dos TestesRESUMO
Objective: Ubiquitous internet access is reshaping the way we live, but it is accompanied by unprecedented challenges in preventing chronic diseases that are usually planted by long exposure to unhealthy lifestyles. This paper proposes leveraging online shopping behaviors as a proxy for personal lifestyle choices to improve chronic disease prevention literacy, targeted for times when e-commerce user experience has been assimilated into most people's everyday lives. Methods: Longitudinal query logs and purchase records from 15 million online shoppers were accessed, constructing a broad spectrum of lifestyle features covering various product categories and buyer personas. Using the lifestyle-related information preceding online shoppers' first purchases of specific prescription drugs, we could determine associations between their past lifestyle choices and whether they suffered from a particular chronic disease. Results: Novel lifestyle risk factors were discovered in two exemplars-depression and type 2 diabetes, most of which showed reasonable consistency with existing healthcare knowledge. Further, such empirical findings could be adopted to locate online shoppers at higher risk of these chronic diseases with decent accuracy [i.e. (area under the receiver operating characteristic curve) AUC=0.68 for depression and AUC=0.70 for type 2 diabetes], closely matching the performance of screening surveys benchmarked against medical diagnosis. Conclusions: Mining online shopping behaviors can point medical experts to a series of lifestyle issues associated with chronic diseases that are less explored to date. Hopefully, unobtrusive chronic disease surveillance via e-commerce sites can grant consenting individuals a privilege to be connected more readily with the medical profession and sophistication.
RESUMO
Developing novel hybrid negative electrode materials with high specific capacity, rate capacitance, and long-term cycle stability is a key factor for pushing large-scale application of supercapacitors. However, construction of robust interfaces and low-crystalline active materials plays a crucial role in realizing the target. In this paper, a one-step phosphorization approach was employed to make low-crystalline Fe2P2O7 nanoplates closely bonded to N/P-co-doped graphene nanotubes (N/P-GNTs@b-Fe2P2O7) through interfacial chemical bonding. The N and P heteroatoms as substitutions for C in GNT skeletons can introduce rich electronic centers, which induces Fe2P2O7 to fix the surface of N/P-GNTs through Fe-N and Fe-P bonds as confirmed by the characterizations. Moreover, the low-crystalline active materials own a disordered internal structure and numerous defects, which not only endows with excellent conductivity but also provides many active sites for redox reactions. Benefiting from the synergistic effects, the prepared N/P-GNTs@b-Fe2P2O7 can not only deliver a high capacity of 257 mA h g-1 (927 F g-1) at 1 A g-1 but also present an excellent rate capability of 184 mA h g-1 (665 F g-1) at 50 A g-1 and outstanding cycle stability (â¼90.6% capacity retention over 40,000 cycles). Furthermore, an asymmetric supercapacitor was assembled using the obtained N/P-GNTs@b-Fe2P2O7 as electrode materials, which can present the energy density as high as 83.3 W h kg-1 at 791 W kg-1 and long-term durability. Therefore, this strategy not only offers an effective pathway for achieving high-performance negative electrode materials but also lays a foundation for further industrialization.
RESUMO
In recent years, cerebral blood oxygen saturation has become a key indicator during the perioperative period. Cerebral blood oxygen saturation monitoring is conducive to the early diagnosis and treatment of cerebral ischemia and hypoxia. The present study discusses the three most extensively used clinical methods for cerebral blood oxygen saturation monitoring from different aspects: working principles, relevant parameters, current situations of research, commonly used equipment, and relative advantages of different methods. Furthermore, through comprehensive comparisons of the methods, we find that near-infrared spectroscopy (NIRS) technology has significant potentials and broad applications prospects in terms of cerebral oxygen saturation monitoring. Despite the current NIRS technology, the only bedside non-invasive cerebral oxygen saturation monitoring technology, still has many defects, it is more in line with the future development trend in the field of medical and health, and will become the main method gradually.
RESUMO
The structural and electronic properties of van der Waals (vdW) heterostructrue constructed by graphene and graphene-like germanium carbide were investigated by computations based on density functional theory with vdW correction. The results showed that the Dirac cone in graphene can be quite well-preserved in the vdW heterostructure. The graphene/graphene-like germanium carbide interface forms a p-type Schottky contact. The p-type Schottky barrier height decreases as the interlayer distance decreases and finally the contact transforms into a p-type Ohmic contact, suggesting that the Schottky barrier can be effectively tuned by changing the interlayer distance in the vdW heterostructure. In addition, it is also possible to modulate the Schottky barrier in the graphene/graphene-like germanium carbide vdW heterostructure by applying a perpendicular electric field. In particular, the positive electric field induces a p-type Ohmic contact, while the negative electric field results in the transition from a p-type to an n-type Schottky contact. Our results demonstrate that controlling the interlayer distance and applying a perpendicular electric field are two promising methods for tuning the electronic properties of the graphene/graphene-like germanium carbide vdW heterostructure, and they can yield dynamic switching among p-type Ohmic contact, p-type Schottky contact, and n-type Schottky contact in a single graphene-based nanoelectronics device.
RESUMO
With the continuous increase in the production of electronic devices, large amounts of electronic waste (E-waste) are routinely being discarded into the environment. This causes serious environmental and ecological problems because of the non-degradable polymers, released hazardous chemicals, and toxic heavy metals. The appearance of biodegradable polymers, which can be degraded or dissolved into the surrounding environment with no pollution, is promising for effectively relieving the environmental burden. Additionally, biodegradable polymers are usually biocompatible, which enables electronics to be used in implantable biomedical applications. However, for some specific application requirements, such as flexibility, electric conductivity, dielectric property, gas and water vapor barrier, most biodegradable polymers are inadequate. Recent research has focused on the preparation of nanocomposites by incorporating nanofillers into biopolymers, so as to endow them with functional characteristics, while simultaneously maintaining effective biodegradability and biocompatibility. As such, bionanocomposites have broad application prospects in electronic devices. In this paper, emergent biodegradable and biocompatible polymers used as insulators or (semi)conductors are first reviewed, followed by biodegradable and biocompatible nanocomposites applied in electronics as substrates, (semi)conductors and dielectrics, as well as electronic packaging, which is highlighted with specific examples. To finish, future directions of the biodegradable and biocompatible nanocomposites, as well as the challenges, that must be overcome are discussed.
RESUMO
The electronic and optical properties of alkali-metal-adsorbed graphene-like gallium nitride (g-GaN) have been investigated using density functional theory. The results denote that alkali-metal-adsorbed g-GaN systems are stable compounds, with the most stable adsorption site being the center of the hexagonal ring. In addition, because of charge transfer from the alkali-metal atom to the host, the g-GaN layer shows clear n-type doping behavior. The adsorption of alkali metal atoms on g-GaN occurs via chemisorption. More importantly, the work function of g-GaN is substantially reduced following the adsorption of alkali-metal atoms. Specifically, the Cs-adsorbed g-GaN system shows an ultralow work function of 0.84 eV, which has great potential application in field-emission devices. In addition, the alkali-metal adsorption can lead to an increase in the static dielectric constant and extend the absorption spectrum of g-GaN.
RESUMO
In this work, gallium nitride (GaN) nanowires (NWs) were synthesized by chemical vapor deposition (CVD) process. The hybrid electrode showed the capacity up to 486 mAh g-1 after 400 cycles at 0.1 A g-1. Even at 10 A g-1, the reversible capacity can stabilize at 75 mAh g-1 (after 1000 cycles). Pseudocapacitive capacity was defined by kinetics analysis. The dynamics analysis and electrochemical reaction mechanism of GaN with Li+ was also analyzed by ex situ XRD, HRTEM, and XPS results. These results not only cast new light on pseudocapacitance enhanced high-rate energy storage devices by self-assembled nanoengineering but also extend the application range of traditional binary III/V semiconductors.