Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 186(22): 4818-4833.e25, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804831

RESUMO

MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.


Assuntos
Alphavirus , Animais , Humanos , Febre de Chikungunya , Vírus Chikungunya/química , Mamíferos , Receptores Virais/metabolismo
2.
Nature ; 588(7837): 308-314, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33208938

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a neurotropic alphavirus transmitted by mosquitoes that causes encephalitis and death in humans1. VEEV is a biodefence concern because of its potential for aerosol spread and the current lack of sufficient countermeasures. The host factors that are required for VEEV entry and infection remain poorly characterized. Here, using a genome-wide CRISPR-Cas9-based screen, we identify low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3)-a highly conserved yet poorly characterized member of the scavenger receptor superfamily-as a receptor for VEEV. Gene editing of mouse Ldlrad3 or human LDLRAD3 results in markedly reduced viral infection of neuronal cells, which is restored upon complementation with LDLRAD3. LDLRAD3 binds directly to VEEV particles and enhances virus attachment and internalization into host cells. Genetic studies indicate that domain 1 of LDLRAD3 (LDLRAD3(D1)) is necessary and sufficient to support infection by VEEV, and both anti-LDLRAD3 antibodies and an LDLRAD3(D1)-Fc fusion protein block VEEV infection in cell culture. The pathogenesis of VEEV infection is abrogated in mice with deletions in Ldlrad3, and administration of LDLRAD3(D1)-Fc abolishes disease caused by several subtypes of VEEV, including highly virulent strains. The development of a decoy-receptor fusion protein suggests a strategy for the prevention of severe VEEV infection and associated disease in humans.


Assuntos
Vírus da Encefalite Equina Venezuelana/metabolismo , Receptores de LDL/metabolismo , Receptores Virais/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Vírus da Encefalite Equina Venezuelana/patogenicidade , Encefalomielite Equina Venezuelana/metabolismo , Encefalomielite Equina Venezuelana/prevenção & controle , Encefalomielite Equina Venezuelana/virologia , Feminino , Teste de Complementação Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Virais/genética , Ligação Viral , Internalização do Vírus
3.
Proc Natl Acad Sci U S A ; 119(30): e2114119119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867819

RESUMO

Alphaviruses can cause severe human arthritis and encephalitis. During virus infection, structural changes of viral glycoproteins in the acidified endosome trigger virus-host membrane fusion for delivery of the capsid core and RNA genome into the cytosol to initiate virus translation and replication. However, mechanisms by which E1 and E2 glycoproteins rearrange in this process remain unknown. Here, we investigate prefusion cryoelectron microscopy (cryo-EM) structures of eastern equine encephalitis virus (EEEV) under acidic conditions. With models fitted into the low-pH cryo-EM maps, we suggest that E2 dissociates from E1, accompanied by a rotation (∼60°) of the E2-B domain (E2-B) to expose E1 fusion loops. Cryo-EM reconstructions of EEEV bound to a protective antibody at acidic and neutral pH suggest that stabilization of E2-B prevents dissociation of E2 from E1. These findings reveal conformational changes of the glycoprotein spikes in the acidified host endosome. Stabilization of E2-B may provide a strategy for antiviral agent development.


Assuntos
Vírus da Encefalite Equina do Leste , Proteínas do Envelope Viral , Antivirais/química , Antivirais/farmacologia , Microscopia Crioeletrônica , Vírus da Encefalite Equina do Leste/química , Concentração de Íons de Hidrogênio , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Proteínas do Envelope Viral/química
4.
Proc Natl Acad Sci U S A ; 117(16): 8890-8899, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245806

RESUMO

Eastern equine encephalitis virus (EEEV), a mosquito-borne icosahedral alphavirus found mainly in North America, causes human and equine neurotropic infections. EEEV neurovirulence is influenced by the interaction of the viral envelope protein E2 with heparan sulfate (HS) proteoglycans from the host's plasma membrane during virus entry. Here, we present a 5.8-Å cryoelectron microscopy (cryo-EM) structure of EEEV complexed with the HS analog heparin. "Peripheral" HS binding sites were found to be associated with the base of each of the E2 glycoproteins that form the 60 quasi-threefold spikes (q3) and the 20 sites associated with the icosahedral threefold axes (i3). In addition, there is one HS site at the vertex of each q3 and i3 spike (the "axial" sites). Both the axial and peripheral sites are surrounded by basic residues, suggesting an electrostatic mechanism for HS binding. These residues are highly conserved among EEEV strains, and therefore a change in these residues might be linked to EEEV neurovirulence.


Assuntos
Desenho de Fármacos , Vírus da Encefalite Equina do Leste/ultraestrutura , Encefalomielite Equina/tratamento farmacológico , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina/ultraestrutura , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Sulfatos de Condroitina/farmacologia , Microscopia Crioeletrônica , Vírus da Encefalite Equina do Leste/metabolismo , Encefalomielite Equina/virologia , Proteoglicanas de Heparan Sulfato/análogos & derivados , Heparina/metabolismo , Humanos , Mesocricetus , Estrutura Molecular , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/ultraestrutura , Ligação Viral/efeitos dos fármacos
5.
Artigo em Inglês | MEDLINE | ID: mdl-37971438

RESUMO

Background: Lumbar disc herniation (LDH) remains one of the extremely common diseases in the elderly population, and despite the fact that percutaneous transforaminal endoscopic discectomy (PTED) can be an effective treatment for LDH, prognostic recurrence of the patients is still a clinical problem that needs to be addressed. Objective: To perform a meta-analysis of the influencing factors of disease recurrence after PTED for LDH to provide evidence for clinical practice. Methods: By screening the PubMed, EMbase, and Cochrane Library databases for relevant studies on disease recurrence after PTED for LDH, we extracted the authors, publication time, outcome measures, and other indicators were extracted for meta-analyses using RevMan 5.3 software. Results: The online retrieval and rigorous screening returned 8 valid articles for analysis, all with high reference value, as their Newcastle Ottawa Scale (NOS) scores were above 6. According to meta-analyses, there were no differences in gender and LDH type and location among patients with LDH recurrence after PTED treatment (P > .05); however, statistical significance was present in Pfirrmann grading, incomplete nucleus pulposus removal during surgery, and Modic changes (P < .05), indicating that these indexes were the influencing factors of LDH recurrence. Conclusions: Pfirrmann grading, incomplete nucleus pulposus removal during surgery, and Modic changes are related factors affecting LDH recurrence after PTED.

6.
PLoS Pathog ; 15(10): e1007867, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658290

RESUMO

Eastern equine encephalitis virus (EEEV), a mosquito-borne RNA virus, is one of the most acutely virulent viruses endemic to the Americas, causing between 30% and 70% mortality in symptomatic human cases. A major factor in the virulence of EEEV is the presence of four binding sites for the hematopoietic cell-specific microRNA, miR-142-3p, in the 3' untranslated region (3' UTR) of the virus. Three of the sites are "canonical" with all 7 seed sequence residues complimentary to miR-142-3p while one is "non-canonical" and has a seed sequence mismatch. Interaction of the EEEV genome with miR-142-3p limits virus replication in myeloid cells and suppresses the systemic innate immune response, greatly exacerbating EEEV neurovirulence. The presence of the miRNA binding sequences is also required for efficient EEEV replication in mosquitoes and, therefore, essential for transmission of the virus. In the current studies, we have examined the role of each binding site by point mutagenesis of the seed sequences in all combinations of sites followed by infection of mammalian myeloid cells, mosquito cells and mice. The resulting data indicate that both canonical and non-canonical sites contribute to cell infection and animal virulence, however, surprisingly, all sites are rapidly deleted from EEEV genomes shortly after infection of myeloid cells or mice. Finally, we show that the virulence of a related encephalitis virus, western equine encephalitis virus, is also dependent upon miR-142-3p binding sites.


Assuntos
Regiões 3' não Traduzidas/genética , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Oeste/genética , MicroRNAs/genética , Replicação Viral/genética , Aedes , Animais , Sítios de Ligação/genética , Linhagem Celular , Cricetinae , Vírus da Encefalite Equina do Leste/imunologia , Vírus da Encefalite Equina do Leste/patogenicidade , Vírus da Encefalite Equina do Oeste/imunologia , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/imunologia , Encefalomielite Equina/virologia , Feminino , Imunidade Inata/imunologia , Células L , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Virulência/genética
7.
PLoS Pathog ; 15(2): e1007584, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742691

RESUMO

Live attenuated vaccines (LAVs), if sufficiently safe, provide the most potent and durable anti-pathogen responses in vaccinees with single immunizations commonly yielding lifelong immunity. Historically, viral LAVs were derived by blind passage of virulent strains in cultured cells resulting in adaptation to culture and a loss of fitness and disease-causing potential in vivo. Mutations associated with these phenomena have been identified but rarely have specific attenuation mechanisms been ascribed, thereby limiting understanding of the attenuating characteristics of the LAV strain and applicability of the attenuation mechanism to other vaccines. Furthermore, the attenuated phenotype is often associated with single nucleotide changes in the viral genome, which can easily revert to the virulent sequence during replication in animals. Here, we have used a rational approach to attenuation of eastern equine encephalitis virus (EEEV), a mosquito-transmitted alphavirus that is among the most acutely human-virulent viruses endemic to North America and has potential for use as an aerosolized bioweapon. Currently, there is no licensed antiviral therapy or vaccine for this virus. Four virulence loci in the EEEV genome were identified and were mutated individually and in combination to abrogate virulence and to resist reversion. The resultant viruses were tested for virulence in mice to examine the degree of attenuation and efficacy was tested by subcutaneous or aerosol challenge with wild type EEEV. Importantly, all viruses containing three or more mutations were avirulent after intracerebral infection of mice, indicating a very high degree of attenuation. All vaccines protected from subcutaneous EEEV challenge while a single vaccine with three mutations provided reproducible, near-complete protection against aerosol challenge. These results suggest that informed mutation of virulence determinants is a productive strategy for production of LAVs even with highly virulent viruses such as EEEV. Furthermore, these results can be directly applied to mutation of analogous virulence loci to create LAVs from other viruses.


Assuntos
Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/imunologia , Vacinas Atenuadas/biossíntese , Animais , Anticorpos Neutralizantes , Linhagem Celular , Cricetinae , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina do Leste/veterinária , Encefalomielite Equina do Leste/virologia , Feminino , Engenharia Genética/métodos , Cavalos , Camundongos , Mutação , América do Norte , Projetos de Pesquisa , Vacinas Atenuadas/imunologia , Vacinas Virais/biossíntese , Virulência , Fatores de Virulência
8.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578290

RESUMO

Alphavirus infection of fibroblastic cell types in vitro inhibits host cell translation and transcription, leading to suppression of interferon alpha/beta (IFN-α/ß) production. However, the effect of infection upon myeloid cells, which are often the first cells encountered by alphaviruses in vivo, is unclear. Previous studies demonstrated an association of systemic IFN-α/ß production with myeloid cell infection efficiency. Murine infection with wild-type Venezuelan equine encephalitis virus (VEEV), a highly myeloid-cell-tropic alphavirus, results in secretion of very high systemic levels of IFN-α/ß, suggesting that stress responses in responding cells are active. Here, we infected myeloid cell cultures with VEEV to identify the cellular source of IFN-α/ß, the timing and extent of translation and/or transcription inhibition in infected cells, and the transcription factors responsible for IFN-α/ß induction. In contrast to fibroblast infection, myeloid cell cultures infected with VEEV secreted IFN-α/ß that increased until cell death was observed. VEEV inhibited translation in most cells early after infection (<6 h postinfection [p.i.]), while transcription inhibition occurred later (>6 h p.i.). Furthermore, the interferon regulatory factor 7 (IRF7), but not IRF3, transcription factor was critical for IFN-α/ß induction in vitro and in sera of mice. We identified a subset of infected Raw 264.7 myeloid cells that resisted VEEV-induced translation inhibition and secreted IFN-α/ß despite virus infection. However, in the absence of IFN receptor signaling, the size of this cell population was diminished. These results indicate that IFN-α/ß induction in vivo is IRF7 dependent and arises in part from a subset of myeloid cells that are resistant, in an IFN-α/ß-dependent manner, to VEEV-induced macromolecular synthesis inhibition.IMPORTANCE Most previous research exploring the interaction of alphaviruses with host cell antiviral responses has been conducted using fibroblast lineage cell lines. Previous studies have led to the discovery of virus-mediated activities that antagonize host cell antiviral defense pathways, such as host cell translation and transcription inhibition and suppression of STAT1 signaling. However, their relevance and impact upon myeloid lineage cell types, which are key responders during the initial stages of alphavirus infection in vivo, have not been well studied. Here, we demonstrate the different abilities of myeloid cells to resist VEEV infection compared to nonmyeloid cell types and begin to elucidate the mechanisms by which host antiviral responses are upregulated in myeloid cells despite the actions of virus-encoded antagonists.


Assuntos
Infecções por Alphavirus/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Substâncias Macromoleculares/metabolismo , Células Mieloides/metabolismo , Alphavirus/fisiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Vírus da Encefalite Equina Venezuelana/fisiologia , Fibroblastos/virologia , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Camundongos , Camundongos Knockout , Células Mieloides/virologia , Células RAW 264.7 , Replicação Viral
9.
Nature ; 506(7487): 245-8, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24352241

RESUMO

Currently, there is little evidence for a notable role of the vertebrate microRNA (miRNA) system in the pathogenesis of RNA viruses. This is primarily attributed to the ease with which these viruses mutate to disrupt recognition and growth suppression by host miRNAs. Here we report that the haematopoietic-cell-specific miRNA miR-142-3p potently restricts the replication of the mosquito-borne North American eastern equine encephalitis virus in myeloid-lineage cells by binding to sites in the 3' non-translated region of its RNA genome. However, by limiting myeloid cell tropism and consequent innate immunity induction, this restriction directly promotes neurologic disease manifestations characteristic of eastern equine encephalitis virus infection in humans. Furthermore, the region containing the miR-142-3p binding sites is essential for efficient virus infection of mosquito vectors. We propose that RNA viruses can adapt to use antiviral properties of vertebrate miRNAs to limit replication in particular cell types and that this restriction can lead to exacerbation of disease severity.


Assuntos
Vírus da Encefalite Equina do Leste/imunologia , Vírus da Encefalite Equina do Leste/patogenicidade , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata/imunologia , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Sítios de Ligação/genética , Linhagem Celular , Cricetinae , Culicidae/virologia , Modelos Animais de Doenças , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/crescimento & desenvolvimento , Feminino , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Insetos Vetores/virologia , Masculino , Camundongos , MicroRNAs/metabolismo , Células Mieloides/imunologia , Células Mieloides/virologia , Especificidade de Órgãos , Replicação Viral/genética , Replicação Viral/imunologia
10.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468884

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus that causes low mortality but high morbidity rates in humans. In addition to natural outbreaks, there is the potential for exposure to VEEV via aerosolized virus particles. There are currently no FDA-licensed vaccines or antiviral therapies for VEEV. Passive immunotherapy is an approved method used to protect individuals against several pathogens and toxins. Human polyclonal antibodies (PAbs) are ideal, but this is dependent upon serum from convalescent human donors, which is in limited supply. Non-human-derived PAbs can have serious immunoreactivity complications, and when "humanized," these antibodies may exhibit reduced neutralization efficiency. To address these issues, transchromosomic (Tc) bovines have been created, which can produce potent neutralizing human antibodies in response to hyperimmunization. In these studies, we have immunized these bovines with different VEEV immunogens and evaluated the protective efficacy of purified preparations of the resultant human polyclonal antisera against low- and high-dose VEEV challenges. These studies demonstrate that prophylactic or therapeutic administration of the polyclonal antibody preparations (TcPAbs) can protect mice against lethal subcutaneous or aerosol challenge with VEEV. Furthermore, significant protection against unrelated coinfecting viral pathogens can be conferred by combining individual virus-specific TcPAb preparations.IMPORTANCE With the globalization and spread or potential aerosol release of emerging infectious diseases, it will be critical to develop platforms that are able to produce therapeutics in a short time frame. By using a transchromosomic (Tc) bovine platform, it is theoretically possible to produce antigen-specific highly neutralizing therapeutic polyclonal human antibody (TcPAb) preparations in 6 months or less. In this study, we demonstrate that Tc bovine-derived Venezuelan equine encephalitis virus (VEEV)-specific TcPAbs are highly effective against VEEV infection that mimics not only the natural route of infection but also infection via aerosol exposure. Additionally, we show that combinatorial TcPAb preparations can be used to treat coinfections with divergent pathogens, demonstrating that the Tc bovine platform could be beneficial in areas where multiple infectious diseases occur contemporaneously or in the case of multipathogen release.


Assuntos
Animais Geneticamente Modificados , Anticorpos Antivirais/administração & dosagem , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Encefalomielite Equina Venezuelana/terapia , Imunização Passiva , Animais , Anticorpos Antivirais/isolamento & purificação , Bovinos , Modelos Animais de Doenças , Humanos , Camundongos , Resultado do Tratamento
11.
J Virol ; 88(4): 2035-46, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307590

RESUMO

Engineered alphavirus vectors expressing reporters of infection have been used for a number of years due to their relatively low costs for analysis of virus replication and the capacity to utilize imaging systems for longitudinal measurements of growth within single animals. In general, these vectors have been derived from Old World alphaviruses using a second viral subgenomic promoter to express the transgenes, placed either immediately after the nonstructural proteins or at the 3' end of the viral coding sequences. However, the relevance of these vectors to natural infections is questionable, as they have not been rigorously tested for virulence in vivo in comparison with parental viruses or for the retention of the reporter during replication. Here, we report construction of new expression vectors for two Old World arthritogenic alphaviruses (Sindbis and Chikungunya viruses) and two New World encephalitic alphaviruses (eastern and Venezuelan equine encephalitis viruses) based upon either fusion of the reporter protein in frame within nonstructural protein 3 (nsP3) or insertion of the reporter as a cleavable element between the capsid and PE2 structural proteins. We have compared these with a traditional 3' double subgenomic promoter virus expressing either a large, firefly luciferase (fLuc; 1,650 nucleotides), or small, NanoLuc (nLuc; 513 nucleotides), luminescent reporter protein. Results indicate that the nLuc is substantially more stable than fLuc during repeated rounds of infection regardless of the transgene location. However, the capsid-PE2 insertion and nsP3 fusion viruses exhibit the most authentic mimicking of parental virus infection regardless of expressed protein. IMPORTANCE As more antiviral therapeutics and vaccines are developed, rapid and accurate in vivo modeling of their efficacy will be required. However, current alphavirus vectors expressing reporters of infection have not been extensively tested for accurate mimicking of the infection characteristics of unmodified parental viruses. Additionally, use of in vivo imaging systems detecting light emitted from luciferase reporters can significantly decrease costs associated with efficacy studies by minimizing numbers of animals. Herein we report development and testing of new expression vectors for Sindbis, Chikungunya, and eastern and Venezuelan equine encephalitis viruses and demonstrate that a small (∼500-nucleotide) reporter gene (NanoLuc; Promega) is very stable and causes a disease severity similar to that caused by unmodified parental viruses. In contrast, expression of larger reporters is very rapidly lost with virus replication and can be significantly attenuating. The utility of NanoLuc for in vivo imaging is also demonstrated.


Assuntos
Alphavirus/genética , Artrite Infecciosa/genética , Encefalite Viral/genética , Genes Reporter/genética , Vetores Genéticos/genética , Replicação Viral/genética , Animais , Western Blotting , Linhagem Celular , Cricetinae , Engenharia Genética/métodos , Luciferases/genética , Transgenes/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia
12.
J Virol ; 87(15): 8582-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720725

RESUMO

Recently, we compared amino acid sequences of the E2 glycoprotein of natural North American eastern equine encephalitis virus (NA-EEEV) isolates and demonstrated that naturally circulating viruses interact with heparan sulfate (HS) and that this interaction contributes to the extreme neurovirulence of EEEV (C. L. Gardner, G. D. Ebel, K. D. Ryman, and W. B. Klimstra, Proc. Natl. Acad. Sci. U. S. A., 108:16026-16031, 2011). In the current study, we have examined the contribution to HS binding of each of three lysine residues in the E2 71-to-77 region that comprise the primary HS binding site of wild-type (WT) NA-EEEV viruses. We also report that the original sequence comparison identified five virus isolates, each with one of three amino acid differences in the E2 71-to-77 region, including mutations in residues critical for HS binding by the WT virus. The natural variant viruses, which possessed either a mutation from lysine to glutamine at E2 71, a mutation from lysine to threonine at E2 71, or a mutation from threonine to lysine at E2 72, exhibited altered interactions with heparan sulfate and cell surfaces and altered virulence in a mouse model of EEEV disease. An electrostatic map of the EEEV E1/E2 heterotrimer based upon the recent Chikungunya virus crystal structure (J. E. Voss, M. C. Vaney, S. Duquerroy, C. Vonrhein, C. Girard-Blanc, E. Crublet, A. Thompson, G. Bricogne, and F. A. Rey, Nature, 468:709-712, 2010) showed the HS binding site to be at the apical surface of E2, with variants affecting the electrochemical nature of the binding site. Together, these results suggest that natural variation in the EEEV HS binding domain may arise during EEEV sylvatic cycles and that this variation may influence receptor interaction and the severity of EEEV disease.


Assuntos
Vírus da Encefalite Equina do Leste/fisiologia , Heparitina Sulfato/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Análise Mutacional de DNA , Modelos Animais de Doenças , Vírus da Encefalite Equina do Leste/química , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/patologia , Encefalomielite Equina/virologia , Lisina/genética , Lisina/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica , Eletricidade Estática , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
13.
PNAS Nexus ; 3(4): pgae119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560529

RESUMO

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.

14.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609165

RESUMO

The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya (CHIKV), eastern-(EEEV), and Venezuelan-(VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate (HS) impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology. Significance Statement: Previously, evidence of arbovirus-GAG interactions in vivo has been limited to associations between viral residues shown to promote enhanced GAG-binding phenotypes in vitro and in vivo phenotypes of viral dissemination and pathogenesis. By directly manipulating host GAG expression, we identified virion-GAG interactions in vivo and discovered a role for phagocyte-expressed GAGs in viral vascular clearance. Moreover, we observe species-specific differences in viral vascular clearance of enhanced GAG-binding virions between murine and avian hosts. These data suggest species-specific variation in GAG structure is a mechanism to distinguish amplifying from dead-end hosts for arbovirus transmission.

15.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680046

RESUMO

The Department of Defense recently began an effort to improve and standardize virus challenge materials and efficacy determination strategies for testing therapeutics and vaccines. This includes stabilization of virus genome sequences in cDNA form where appropriate, use of human-derived virus isolates, and noninvasive strategies for determination of challenge virus replication. Eventually, it is desired that these approaches will satisfy the FDA "Animal Rule" for licensure, which substitutes animal efficacy data when human data are unlikely to be available. To this end, we created and examined the virulence phenotype of cDNA clones of prototypic human infection-derived strains of the alphaviruses, Venezuelan (VEEV INH9813), eastern (EEEV V105) and western (WEEV Fleming) equine encephalitis viruses, and created fluorescent and luminescent reporter expression vectors for evaluation of replication characteristics in vitro and in vivo. Sequences of minimally passaged isolates of each virus were used to synthesize full-length cDNA clones along with a T7 transcription promoter-based bacterial propagation vector. Viruses generated from the cDNA clones were compared with other "wild type" strains derived from cDNA clones and GenBank sequences to identify and eliminate putative tissue culture artifacts accumulated in the cell passaged biological stocks. This was followed by examination of aerosol and subcutaneous infection and disease in mouse models. A mutation that increased heparan sulfate binding was identified in the VEEV INH9813 biological isolate sequence and eliminated from the cDNA clone. Viruses derived from the new human isolate cDNA clones showed similar mouse virulence to existing clone-derived viruses after aerosol or subcutaneous inoculation.


Assuntos
Vírus da Encefalite Equina Venezuelana , Vírus da Encefalite Equina do Oeste , Estados Unidos , Humanos , Animais , Cavalos , Camundongos , DNA Complementar/genética , Fenótipo , Células Clonais
16.
Purinergic Signal ; 6(1): 31-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19838818

RESUMO

The P2X(7) receptor exhibits significant allelic polymorphism in humans, with both loss and gain of function variants potentially impacting on a variety of infectious and inflammatory disorders. At least five loss-of-function polymorphisms (G150R, R307Q, T357S, E496A, and I568N) and two gain-of-function polymorphisms (H155Y and Q460R) have been identified and characterized to date. In this study, we used RT-PCR cloning to isolate and characterize P2X(7) cDNA clones from human PBMCs and THP-1 cells. A previously unreported variant with substitutions of V80M and A166G was identified. When expressed in HEK293 cells, this variant exhibited heightened sensitivity to the P2X(7) agonist (BzATP) relative to the most frequent allele, as shown by pore formation measured by fluorescent dye uptake into cells. Mutational analyses showed that A166G alteration was critical for the gain-of-function change, while V80M was not. Full-length variants with multiple previously identified nonsynonymous SNPs (H155Y, H270R, A348T, and E496A) were also identified. Distinct functional phenotypes of the P2X(7) variants or mutants constructed with multiple polymorphisms were observed. Gain-of-function variations (A166G or H155Y) could not rescue the loss-of-function E496A polymorphism. Synergistic effects of the gain-of-function variations were also observed. We also identified the A348T alteration as a weak gain-of-function variant. Thus, these results identify the new gain-of-function variant A166G and demonstrate that multiple-gene polymorphisms contribute to functional phenotypes of the human P2X(7) receptor. Furthermore, the results demonstrate that the C-terminal of the cysteine-rich domain 1 of P2X(7) is critical for regulation of P2X(7)-mediated pore formation.

17.
Viruses ; 12(9)2020 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933112

RESUMO

Venezuelan equine encephalitis virus (VEEV), a mosquito transmitted alphavirus of the Togaviridae family, can cause a highly inflammatory and encephalitic disease upon infection. Although a category B select agent, no FDA-approved vaccines or therapeutics against VEEV currently exist. We previously demonstrated NF-κB activation and macromolecular reorganization of the IKK complex upon VEEV infection in vitro, with IKKß inhibition reducing viral replication. Mass spectrometry and confocal microscopy revealed an interaction between IKKß and VEEV non-structural protein 3 (nsP3). Here, using western blotting, a cell-free kinase activity assay, and mass spectrometry, we demonstrate that IKKß kinase activity can directly phosphorylate VEEV nsP3 at sites 204/5, 142, and 134/5. Alanine substitution mutations at sites 204/5, 142, or 134/5 reduced VEEV replication by >30-100,000-fold corresponding to a severe decrease in negative-strand synthesis. Serial passaging rescued viral replication and negative-strand synthesis, and sequencing of revertant viruses revealed reversion to the wild-type TC-83 phosphorylation capable amino acid sequences at nsP3 sites 204/5, 142, and 135. Generation of phosphomimetic mutants using aspartic acid substitutions at site 204/5 resulted in rescue of both viral replication and negative-strand RNA production, whereas phosphomimetic mutant 134/5 rescued viral replication but failed to restore negative-strand RNA levels, and phosphomimetic mutant 142 did not rescue VEEV replication. Together, these data demonstrate that IKKß can phosphorylate VEEV nsP3 at sites 204/5, 142, and 134/5, and suggest that phosphorylation is essential for negative-strand RNA synthesis at site 204/5, but may be important for infectious particle production at site 134/5.


Assuntos
Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/metabolismo , Quinase I-kappa B/metabolismo , Proteínas não Estruturais Virais/metabolismo , Aedes , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus da Encefalite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana , Humanos , Mutação , NF-kappa B/metabolismo , Fosforilação , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
18.
mBio ; 11(1)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047126

RESUMO

Venezuelan and western equine encephalitis viruses (VEEV and WEEV, respectively) invade the central nervous system (CNS) early during infection, via neuronal and hematogenous routes. While viral replication mediates host shutoff, including expression of type I interferons (IFN), few studies have addressed how alphaviruses gain access to the CNS during established infection or the mechanisms of viral crossing at the blood-brain barrier (BBB). Here, we show that hematogenous dissemination of VEEV and WEEV into the CNS occurs via caveolin-1 (Cav-1)-mediated transcytosis (Cav-MT) across an intact BBB, which is impeded by IFN and inhibitors of RhoA GTPase. Use of reporter and nonreplicative strains also demonstrates that IFN signaling mediates viral restriction within cells comprising the neurovascular unit (NVU), differentially rendering brain endothelial cells, pericytes, and astrocytes permissive to viral replication. Transmission and immunoelectron microscopy revealed early events in virus internalization and Cav-1 association within brain endothelial cells. Cav-1-deficient mice exhibit diminished CNS VEEV and WEEV titers during early infection, whereas viral burdens in peripheral tissues remained unchanged. Our findings show that alphaviruses exploit Cav-MT to enter the CNS and that IFN differentially restricts this process at the BBB.IMPORTANCE VEEV, WEEV, and eastern equine encephalitis virus (EEEV) are emerging infectious diseases in the Americas, and they have caused several major outbreaks in the human and horse population during the past few decades. Shortly after infection, these viruses can infect the CNS, resulting in severe long-term neurological deficits or death. Neuroinvasion has been associated with virus entry into the CNS directly from the bloodstream; however, the underlying molecular mechanisms have remained largely unknown. Here, we demonstrate that following peripheral infection alphavirus augments vesicular formation/trafficking at the BBB and utilizes Cav-MT to cross an intact BBB, a process regulated by activators of Rho GTPases within brain endothelium. In vivo examination of early viral entry in Cav-1-deficient mice revealed significantly lower viral burdens in the brain than in similarly infected wild-type animals. These studies identify a potentially targetable pathway to limit neuroinvasion by alphaviruses.


Assuntos
Barreira Hematoencefálica/virologia , Cavéolas/virologia , Vírus da Encefalite Equina Venezuelana/fisiologia , Vírus da Encefalite Equina do Oeste/fisiologia , Transcitose , Internalização do Vírus , Animais , Caveolina 1/genética , Linhagem Celular , Sistema Nervoso Central/virologia , Células Endoteliais/virologia , Masculino , Camundongos Endogâmicos C57BL , Replicação Viral
19.
bioRxiv ; 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32607507

RESUMO

SARS-CoV-2, the causative agent of COVID-19, emerged at the end of 2019 and by mid-June 2020, the virus has spread to at least 215 countries, caused more than 8,000,000 confirmed infections and over 450,000 deaths, and overwhelmed healthcare systems worldwide. Like SARS-CoV, which emerged in 2002 and caused a similar disease, SARS-CoV-2 is a betacoronavirus. Both viruses use human angiotensin-converting enzyme 2 (hACE2) as a receptor to enter cells. However, the SARS-CoV-2 spike (S) glycoprotein has a novel insertion that generates a putative furin cleavage signal and this has been postulated to expand the host range. Two low passage (P) strains of SARS-CoV-2 (Wash1: P4 and Munich: P1) were cultured twice in Vero-E6 cells and characterized virologically. Sanger and MinION sequencing demonstrated significant deletions in the furin cleavage signal of Wash1: P6 and minor variants in the Munich: P3 strain. Cleavage of the S glycoprotein in SARS-CoV-2-infected Vero-E6 cell lysates was inefficient even when an intact furin cleavage signal was present. Indirect immunofluorescence demonstrated the S glycoprotein reached the cell surface. Since the S protein is a major antigenic target for the development of neutralizing antibodies we investigated the development of neutralizing antibody titers in serial serum samples obtained from COVID-19 human patients. These were comparable regardless of the presence of an intact or deleted furin cleavage signal. These studies illustrate the need to characterize virus stocks meticulously prior to performing either in vitro or in vivo pathogenesis studies.

20.
J Virol ; 82(3): 1204-13, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18032504

RESUMO

The equine lentivirus receptor 1 (ELR1), a member of the tumor necrosis factor receptor (TNFR) protein family, has been identified as a functional receptor for equine infectious anemia virus (EIAV). Toward defining the functional interactions between the EIAV SU protein (gp90) and its ELR1 receptor, we mapped the gp90 binding domain of ELR1 by a combination of binding and functional assays using the EIAV SU gp90 protein and various chimeric receptor proteins derived from exchanges between the functional ELR1 and the nonbinding homolog, mouse herpesvirus entry mediator (murine HveA). Complementary exchanges of the respective cysteine-rich domains (CRD) between the ELR1 and murine HveA proteins revealed CRD1 as the predominant determinant of functional gp90 binding to ELR1 and also to a chimeric murine HveA protein expressed on the surface of transfected Cf2Th cells. Mutations of individual amino acids in the CRD1 segment of ELR1 and murine HveA indicated the Leu70 in CRD1 as essential for functional binding of EIAV gp90 and for virus infection of transduced Cf2Th cells. The specificity of the EIAV SU binding domain identified for the ELR1 receptor is fundamentally identical to that reported previously for functional binding of feline immunodeficiency virus SU to its coreceptor CD134, another TNFR protein. These results indicate unexpected common features of the specific mechanisms by which diverse lentiviruses can employ TNFR proteins as functional receptors.


Assuntos
Glicoproteínas/metabolismo , Vírus da Anemia Infecciosa Equina/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Sequência de Aminoácidos , Animais , Linhagem Celular , Cães , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa