Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mil Med Res ; 10(1): 34, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491281

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC), the most aggressive subtype of breast cancer, is characterized by a high incidence of brain metastasis (BrM) and a poor prognosis. As the most lethal form of breast cancer, BrM remains a major clinical challenge due to its rising incidence and lack of effective treatment strategies. Recent evidence suggested a potential role of lipid metabolic reprogramming in breast cancer brain metastasis (BCBrM), but the underlying mechanisms are far from being fully elucidated. METHODS: Through analysis of BCBrM transcriptome data from mice and patients, and immunohistochemical validation on patient tissues, we identified and verified the specific down-regulation of retinoic acid receptor responder 2 (RARRES2), a multifunctional adipokine and chemokine, in BrM of TNBC. We investigated the effect of aberrant RARRES2 expression of BrM in both in vitro and in vivo studies. Key signaling pathway components were evaluated using multi-omics approaches. Lipidomics were performed to elucidate the regulation of lipid metabolic reprogramming of RARRES2. RESULTS: We found that down-regulation of RARRES2 is specifically associated with BCBrM, and that RARRES2 deficiency promoted BCBrM through lipid metabolic reprogramming. Mechanistically, reduced expression of RARRES2 in brain metastatic potential TNBC cells resulted in increased levels of glycerophospholipid and decreased levels of triacylglycerols by regulating phosphatase and tensin homologue (PTEN)-mammalian target of rapamycin (mTOR)-sterol regulatory element-binding protein 1 (SREBP1) signaling pathway to facilitate the survival of breast cancer cells in the unique brain microenvironment. CONCLUSIONS: Our work uncovers an essential role of RARRES2 in linking lipid metabolic reprogramming and the development of BrM. RARRES2-dependent metabolic functions may serve as potential biomarkers or therapeutic targets for BCBrM.


Assuntos
Neoplasias Encefálicas , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Regulação para Baixo , Lipídeos , Mamíferos , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
2.
Mil Med Res ; 9(1): 71, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529792

RESUMO

BACKGROUND: The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms, among which transcriptional regulation is one of the most important components. Alternative splicing dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell cycle. However, the patterns of transcript isoform expression in the cell cycle are unclear. Therapies targeting cell cycle checkpoints are commonly used as anticancer therapies, but none of them have been designed or evaluated at the alternative splicing transcript level. The utility of these transcripts as markers of cell cycle-related drug sensitivity is still unknown, and studies on the expression patterns of cell cycle-targeting drug-related transcripts are also rare. METHODS: To explore alternative splicing patterns during cell cycle progression, we performed sequential transcriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA-MB-231 cell lines, using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples, and we developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle. Genomics of Drug Sensitivity in Cancer (GDSC) drug sensitivity datasets and Cancer Cell Line Encyclopedia (CCLE) transcript datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity. We identified transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients. Cytotoxicity assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6 (CDK4/6) inhibitors. Finally, alternative splicing transcripts associated with mitotic (M) phase arrest were analyzed using an RNA synthesis inhibition assay and transcriptome analysis. RESULTS: We established high-resolution transcriptome datasets of synchronized cell cycle samples from colon cancer HCT116 and breast cancer MDA-MB-231 cells. The results of the cell cycle assessment showed that 43,326, 41,578 and 29,244 transcripts were found to be periodically expressed in HeLa, HCT116 and MDA-MB-231 cells, respectively, among which 1280 transcripts showed this expression pattern in all three cancer cell lines. Drug sensitivity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitivity than their corresponding genes. Cell cycle-related drug screening showed that the level of the CDK4 transcript ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level of the CDK4 reference transcript ENST00000257904. The transcriptional inhibition assay following M phase arrest further confirmed the M-phase-specific expression of the splicing transcripts. Combined with the cell cycle-related drug screening, the results also showed that a set of periodic transcripts, for example, ENST00000314392 (a dolichyl-phosphate mannosyltransferase polypeptide 2 isoform transcript), was more associated with drug sensitivity than the levels of their corresponding gene transcripts. CONCLUSIONS: In summary, we identified a panel of cell cycle-related periodic transcripts and found that the levels of transcripts of drug target genes showed different values for predicting drug sensitivity, providing novel insights into alternative splicing-related drug development and evaluation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias do Colo , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Isoformas de Proteínas/genética , Isoformas de Proteínas/uso terapêutico , Divisão Celular , Ciclo Celular , Neoplasias do Colo/tratamento farmacológico
3.
ACS Appl Mater Interfaces ; 13(30): 35990-35996, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288653

RESUMO

The propane (C3H8)-trapping adsorption behavior is considered as a potential performance to directly produce high-purity propylene (C3H6). Herein, we report an ultramicroporous Mn-based metal-organic framework (NUM-7) with a reverse C3H8-selective behavior in the low-pressure area. The pore structure of this material possesses more electronegative aromatic benzene rings for the stronger binding affinity to C3H8, and the material shows outstanding reverse ideal adsorbed solution theory (IAST) selectivity values. Single-component sorption isotherms preliminarily show the reverse adsorption behavior in the low-pressure part, and the moderate heat of adsorption further confirms this performance and exhibits less energy consumption for regeneration. In addition, the purification effect for the C3H8/C3H6 mixture is evaluated by the IAST selectivity and transient breakthrough curves, and the GCMC calculation results reveal that the fascinating C3H8-trapping behavior mainly depends on the multiple C-H···π interactions. Moreover, because C3H6 is the desired target product, the interesting C3H8-selective adsorption behavior of NUM-7 may provide its potential for one-step purification of C3H6, and this work can provide the method of developing C3H8-selective materials for the purification of C3H6.

4.
ACS Appl Mater Interfaces ; 13(1): 962-969, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33370532

RESUMO

The separation of ethylene (C2H4) from C2 hydrocarbons is considered as one of the most difficult and important processes in the petrochemical industry. Heat-driven cryogenic distillation is still widely used in the C2 hydrocarbons separation realms, which is an energy intensive process and takes up immense space. In response to a greener, more energy-efficient sustainable development, we successfully synthesized a multifunction microporous Mg-based MOF [Mg2(TCPE)(µ2-OH2)(DMA)2]·solvents (NUM-9) with C2H6/C2H2 selectivity based on a physical adsorption mechanism, and with outstanding stability; especially, it is stable up to 500 °C under an air atmosphere. NUM-9a (activated NUM-9) shows good performances in the separation of C2H6/C2H2 from raw ethylene gases. In addition, its actual separation potential is also examined by IAST and dynamic column breakthrough experiments. GCMC calculation results indicate that the unique structure of NUM-9a is primarily conducive to the selective adsorption of C2H6 and C2H2. More importantly, compared with C2H4, NUM-9a prefers to selectively adsorb C2H6 and C2H2 simultaneously, which makes NUM-9a as a sorbent have the capacity to separate C2H4 from C2 hydrocarbon mixtures under mild conditions through a greener and energy-efficient separation strategy.

5.
ChemSusChem ; 13(3): 548-555, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31714031

RESUMO

The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a promising renewable monomer to produce bio-based polymers such as polyethylene furanoate (PEF), has recently emerged as the subject of increasing interest. Here, holey 2 D Mn2 O3 nanoflakes were obtained by a facile thermal treatment of a Mn-based metal-organic framework (MOF) precursor. The structural and morphological properties of the nanoflakes were characterized by powder XRD, FTIR, SEM and TEM to explore the formation process. It was inferred that the linker loss in the MOF precursor and the oxidation of the Mn cation induced by the heat-treatment in air were responsible for the formation of holey 2 D Mn2 O3 nanoflakes. The specific morphology and redox cycle of the Mn cation on the surface endowed the synthesized nanoflakes with promising performance on the selective oxidation. The obtained nanoflakes calcined at 400 °C (M400) afforded over 99.5 % yield of FDCA at complete conversion of HMF, which is superior to the catalytic activity of commercial Mn2 O3 and activated MnO2 . To our knowledge, Mn2 O3 exhibiting such a high performance on the aerobic oxidation of HMF to FDCA has not yet been reported. Based on the investigation of the experimental parameters, a plausible reaction mechanism was proposed.

6.
ACS Appl Mater Interfaces ; 12(5): 6105-6111, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922384

RESUMO

As a new type of porous material, metal-organic frameworks (MOFs) have been widely studied in gas adsorption and separation, especially in C2 hydrocarbons. Considering the stronger interaction between the unsaturated molecules and the metal sites, and the smaller molecular size of unsaturated molecules, the usual relationship of affinities and adsorption capacities among C2 hydrocarbons in most common MOFs is C2H2 > C2H4 > C2H6. Herein, a unique microporous metal-organic framework, NUM-7a (activated NUM-7), with a completely reversed adsorption relationship for C2 hydrocarbons (C2H6 > C2H4 > C2H2) has been successfully synthesized, which breaks the traditional concept of the adsorption relationship of MOFs for C2 hydrocarbons. Based on this unique adsorption relationship, a green and simple one-step separation purification for a large amount of C2H4 can be expected to be achieved through the selective adsorption of C2H6. In addition, NUM-7a also shows good selectivities in C2H2/CO2 and CO2/CH4.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa