Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 23(1): e13279, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284612

RESUMO

Pickering emulsion (PE) technology effectively addresses the issues of poor compatibility and low retention of hydrophobic active ingredients in food packaging. Nonetheless, it is important to recognize that each stage of the preparation process for PE films/coatings (PEFCs) can significantly influence their functional properties. With the fundamental considerations of environmental friendliness and human safety, this review extensively explores the potential of raw materials for PEFC and introduces the preparation methods of nanoparticles, emulsification technology, and film-forming techniques. The critical factors that impact the performance of PEFC during the preparation process are analyzed to enhance food preservation effectiveness. Moreover, the latest advancements in PE packaging across diverse food applications are summarized, along with prospects for innovative food packaging materials. Finally, the preservation mechanism and application safety have been systematically elucidated. The study revealed that the PEFCs provide structural flexibility, where designable nanoparticles offer unique functional properties for intelligent control over active ingredient release. The selection of the dispersed and continuous phases, along with component proportions, can be customized for specific food characteristics and storage conditions. By employing suitable preparation and emulsification techniques, the stability of the emulsion can be improved, thereby enhancing the effectiveness of the films/coatings in preserving food. Including additional substances broadens the functionality of degradable materials. The PE packaging technology provides a safe and innovative solution for extending the shelf life and enhancing the quality of food products by protecting and releasing active components.


Assuntos
Conservação de Alimentos , Conservantes de Alimentos , Humanos , Emulsões , Alimentos , Embalagem de Alimentos
2.
Compr Rev Food Sci Food Saf ; 23(4): e13390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031881

RESUMO

Naturally sourced pH-sensitive indicator films are of interest for real-time monitoring of food freshness through color changes because of their safety. Therefore, natural pigments for indicator films are required. However, pigment stability is affected by environmental factors, which can in turn affect the sensitivity and color stability of the pH-sensitive indicator film. First, natural pigments (anthocyanin, betalain, curcumin, alizarin, and shikonin) commonly used in pH-sensitive indicator films are presented. Subsequently, the mechanisms behind the change in pigment color under different pH environments and their applications in monitoring food freshness are also described. Third, influence factors, such as the sources, types, and pH sensitivity of pigments, as well as environmental parameters (light, temperature, humidity, and oxygen) of sensitivity and color stability, are analyzed. Finally, methods for improving the pH-sensitive indicator film are explored, encapsulation of natural pigments, incorporation of a hydrophobic film-forming matrix or function material, and protective layer have been shown to enhance the color stability of indicator films, the addition of copigments or mental ions, blending of different natural pigments, and the utilization of electrospinning have been proved to increase the color sensitivity of indicator films. This review could provide theoretical support for the development of naturally sourced pH-sensitive indicator films with high stability and sensitivity and facilitate the development in the field of monitoring food freshness.


Assuntos
Cor , Embalagem de Alimentos , Concentração de Íons de Hidrogênio , Embalagem de Alimentos/métodos , Pigmentos Biológicos/química
3.
Food Microbiol ; 98: 103787, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875215

RESUMO

The fungal communities and volatile compounds of traditional dry sausages collected from five different regions in Northeast China, including Harbin (HRB), Daqing (DQ), Suihua (SH), Hegang (HG) and Mudanjiang (MDJ) were investigated in this study. The results revealed clear differences among the fungal community structures of the sausages. Aspergillus pseudoglaucus, Debaryomyces hansenii, and Trichosporon asahii were found to be the predominant species in the sausages from HRB, HG, and MDJ, respectively. Candida zeylanoides was the predominant species in the sausage from DQ and SH. Additionally, 88 volatile compounds were identified in all sausages, of which 31 volatile compounds were the most important flavor contributors (odor activity value > 1). Potential correlation analysis revealed that 8 fungi (D. hansenii, C. zeylanoides, T. asahii, A. pseudoglaucus, Aspergillus sydowii, Penicillium expansum, A. alternata, and Alternaria tenuissima) showed significant positive correlations with ≥3 key volatile compounds. Among these fungi, D. hansenii was regarded as a core functional fungus responsible for the formation of the volatile compounds, given its strong connection with the highest number of key volatile compounds. These results provide detailed insight into the fungal communities of traditional dry sausages and a deeper understanding of the contribution of these fungi to sausage flavor.


Assuntos
Alimentos Fermentados/microbiologia , Fungos/isolamento & purificação , Fungos/metabolismo , Produtos da Carne/microbiologia , Micobioma , Compostos Orgânicos Voláteis/metabolismo , Animais , Fermentação , Alimentos Fermentados/análise , Microbiologia de Alimentos , Fungos/classificação , Fungos/genética , Odorantes/análise , Suínos , Paladar , Compostos Orgânicos Voláteis/análise
4.
J Sci Food Agric ; 101(12): 5016-5027, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33548144

RESUMO

BACKGROUND: Microbial protease can interact with meat protein in fermented meat products at a certain pH and temperature. To investigate the effects of various pH values and temperatures on the structural characteristics of Lactobacillus fermentum R6 protease, which was isolated from Harbin dry sausages, spectroscopy techniques and molecular dynamics were utilized to evaluate structural changes. RESULTS: The protease exhibited a stable spatial structure at pH 7 and 40 °C, and the extension of the protease structure was also promoted. Although the structure of the protease could be changed or destroyed by pH 8 and 70 °C, it was mainly determined by the changes of secondary and tertiary structures such as α-helix, ß-sheet, ß-turn and random coil. In addition, carbonyl vibration, -NH vibration, C-H stretching vibration and disulphide bonds were present in L. fermentum R6 protease under various pH and temperature conditions. Molecular docking showed that the protease can interact with myosin light chain, myosin heavy chain, actin and myoglobin. CONCLUSION: The protease can maintain stable structure and interact with meat protein, which reflected certain application prospects in the fermentation of Harbin dry sausages. © 2021 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias/química , Limosilactobacillus fermentum/enzimologia , Produtos da Carne/microbiologia , Proteínas de Carne/química , Metaloproteases/química , Peptídeo Hidrolases/química , Animais , Biocatálise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Limosilactobacillus fermentum/isolamento & purificação , Produtos da Carne/análise , Simulação de Acoplamento Molecular , Suínos , Temperatura
5.
Int J Biol Macromol ; 257(Pt 1): 128430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043652

RESUMO

Tomato is an inexpensive vegetable with high nutritional value,but it does not have the suitable self-supporting ability for 3D printing. Xanthan gum (XG) is a common thickener that may improve 3D printability of tomatoes paste. This study evaluated the printability of tomato-starch paste (TSP) by examining its rheological and textural properties and microstructure of 3D samples. The rheological results showed that apparent viscosity, recovery rate, storage modulus, loss modulus, initial and average rheological forces, and shear stress increased significantly (P < 0.05) with increase of XG levels in tomato-starch paste. The low-field NMR results showed that T21 and T22 of the TSP decreased with increase of XG levels (P < 0.05). With increase of XG levels, a dense network structure in the TSP was formed as observed in the microstructural images. The TSP with 5 g/kg XG had the highest printing accuracy, and the textural property showed that the addition of 5 g/kg of XG significantly improved the hardness, elasticity, and chewability of TSP (P < 0.05). Overall, with increase of XG levels the fluidity of the pseudoplastic gel formed by the tomato-starch system and increased the density of the structure, resulting in improved extrudability, shape stability, and self-supporting property.


Assuntos
Solanum lycopersicum , Amido , Polissacarídeos Bacterianos/química , Viscosidade , Reologia
6.
Food Chem X ; 21: 101204, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38379807

RESUMO

This study aimed to assess the effect of an external protease secreted by Staphylococcus (S.) xylosus on the hydrolysis and flavor properties of meat protein. The results indicated that the protease significantly increased the solubility of myofibrillar proteins (MPs) and sarcoplasmic proteins (SPs) in water (P < 0.05), and altered their surface hydrophobicity and secondary structure. The results of micromorphological and free amino acids analyses suggested that the protease degraded the large and insoluble meat protein aggregates into small molecular proteins with uniform distribution and amino acids, especially glycine, glutamic acid, leucine, and cysteine. Moreover, the protease-catalyzed hydrolysis promoted the formation of some volatile compounds in the MPs and SPs. Additionally, molecular docking analysis suggested that hydrogen bond and hydrophobic interaction promoted the formation of a S. xylosus protease/meat protein complex. These results provided a basis for the future application of S. xylosus protease in meat products.

7.
Int J Biol Macromol ; 257(Pt 1): 128569, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065443

RESUMO

This work aimed to investigate the combined effect of ultrasound (US) treatment and κ-carrageenan (KC) addition on the gelling properties and rheological behaviors of myofibrillar protein (MP). Without US treatment, the KC incorporation promoted the gel strength and water-holding capacity (WHC) of MP gels. These properties were further improved by 20 min US treatment with gel strength of 98.61 g and WHC of 79.87 %, which was mainly attributed to changes associated with hydrophobic interactions and disulfide bonds and the transformation from α-helix to ß-sheet in MP gels. In addition, US treatment for 20 min effectively resulted in a more homogeneous polymer distribution of the MP-KC mixed system, leading to lower particle size and the largest G' and G″ values of the MP-KC mixed gels. However, longer US treatment times (30, 40 and 50 min) rendered lower gel strength, WHC, storage modulus and loss modulus of MP-KC mixed gels, which was mainly due to the formation of loose and disordered gel structures. Our present results indicated that the application of US to MP for an intermediate treatment time (20 min) combined with KC provides a potential and novel strategy to promote the gel qualities of heat-induced MP gels.


Assuntos
Proteínas Musculares , Carragenina , Géis/química , Proteínas Musculares/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Reologia
8.
Meat Sci ; 217: 109595, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39004037

RESUMO

The purpose of the present study was to investigate the mechanism of gel deterioration of myofibrillar proteins (MP) gels induced by high-temperature treatments based on the protein aggregation and conformation. The results showed that the gel strength and water holding capacity of MP obviously increased and then decreased as the temperature increased, reaching the maximum value at 80 °C (P < 0.05). The microstructure analysis revealed that appropriate temperature (80 °C) contributed to the formation of a more homogeneous, denser, and smoother three-dimensional mesh structure when compared other treatment temperatures, whereas excessive temperature (95 °C) resulted in the formation of heterogeneous and large protein aggregates of MP, decreasing the continuity of gel networks. This was verified by the rheological properties of MP gels. The particle size (D4,3 and D3,2) of MP obviously increased with larger clusters at excessive temperature, and the surface hydrophobicity of MP decreased (P < 0.05), which has been linked to the formation of soluble or insoluble protein aggregates. Tertiary structure and secondary structure results revealed that the proteins had a tendency to be more stretched under higher temperature treatments, which resulted in a decrease in covalent interactions and non-covalent interactions, fostering the over-aggregation of MP. Therefore, our present study indicated that the degradation of MP gels treated at high temperatures was explained by protein aggregation and conformational changes in MP.


Assuntos
Géis , Temperatura Alta , Proteínas Musculares , Miofibrilas , Agregados Proteicos , Animais , Géis/química , Suínos , Miofibrilas/química , Proteínas Musculares/química , Interações Hidrofóbicas e Hidrofílicas , Reologia , Conformação Proteica , Manipulação de Alimentos/métodos , Proteínas de Carne/química , Tamanho da Partícula
9.
Food Chem ; 459: 140430, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024870

RESUMO

This study evaluated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on the physicochemical, thermal stability, rheological, and structural properties of porcine longissimus dorsi myofibrillar protein (MP). UPT treatment significantly improved protein solubility (73.10%) and reduced protein turbidity (0.123) compared with AT, WT, and PT treatments (P < 0.05). UPT treatment reduced the MP particle size (635.50 nm) and zeta potential (-6.38 mV) compared with AT and WT treatments (P < 0.05), which was closer to that of the fresh sample. UPT treatment also maintained the MP surface hydrophobicity and thermal stability. UPT treatment improved the MP rheological properties of the sample. In addition, UPT treatment effectively protected the MP secondary and tertiary structures. In conclusion, UPT treatment better maintained the MP physicochemical, thermal stability, rheological, and structural properties of thawed porcine longissimus dorsi. Therefore, UPT treatment can be considered as an effective thawing method.


Assuntos
Proteínas Musculares , Reologia , Água , Animais , Suínos , Água/química , Proteínas Musculares/química , Miofibrilas/química , Estabilidade Proteica , Solubilidade , Músculo Esquelético/química , Interações Hidrofóbicas e Hidrofílicas , Temperatura Alta , Congelamento
10.
Meat Sci ; 217: 109609, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39067253

RESUMO

This study aimed to investigate the effect of lysine (Lys) on quality profile promotion and saltiness compensation in reduced­sodium salt frankfurters. The results showed that the cooking loss of reduced­sodium salt frankfurters decreased from 5.63 to 3.45% when the Lys level increased from 0.1 to 0.7%, as well as enhanced water contents and saltiness in a Lys dose-dependent manner. Moreover, the corresponding peak area percentage (A21) of reduced­sodium salt frankfurters remarkably increased from 79.63% to 81.48% with the increased level of Lys. However, a higher level of Lys (≥ 0.5%) obviously reduced the textural properties of reduced­sodium salt frankfurters, which was clearly verified by looser and rougher microstructures. Furthermore, hydrogen bonds were found to be the dominant molecular force in Lys-added reduced­sodium salt frankfurters. Meanwhile, 0.3% Lys was found to exhibit the optimal sodium salt-replacing effect due to the highest degree of quality profile promotion and saltiness compensation. Additionally, directional triangle sensory evaluation further confirmed that the reduced­sodium salt frankfurters treated with 0.3% Lys was perceived to be similar to control frankfurters, resulting a 50% salt-reduction effect. Thus, our results suggested that Lys could be applied as an efficient sodium salt alternative in reduced­sodium salt frankfurters.


Assuntos
Lisina , Produtos da Carne , Cloreto de Sódio na Dieta , Produtos da Carne/análise , Humanos , Animais , Cloreto de Sódio na Dieta/análise , Culinária , Masculino , Água , Paladar , Feminino , Adulto
11.
Food Chem ; 460(Pt 1): 140424, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39033636

RESUMO

This work investigated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi using fresh sample as control. The thawing time of UPT samples was significantly reduced by 81.15% compared to AT treatment (P < 0.05). The thawing loss of UPT samples was 1.55% significantly lower than AT samples (4.51%) (P < 0.05). In addition, UPT samples had the least cooking loss and centrifugal loss. UPT treatment reduced the conversion of bound and immobilized water to free water and resulted in more uniform water distribution. UPT treatment significantly decreased the thiobarbituric acid reactive substances (TBARS) value and carbonyl content and increased the total sulfhydryl content of the samples (P < 0.05). In conclusion, UPT treatment increased the thawing rate and retarded the lipid and protein oxidation, resulting in better maintenance of quality characteristics of porcine longissimus dorsi than other thawing methods.

12.
Food Res Int ; 175: 113812, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129013

RESUMO

This research aimed to create Pickering emulsions using modified soy protein isolate (SPI) as a stabilizer and flaxseed-derived diglyceride (DAG) as an oil phase. The SPI was modified through a process involving both heating and ultrasound treatment. The result indicated that the droplet size of emulsions increased with the increase in oil content (p < 0.05). For instance, the largest droplet size (23 µm) was observed at an oil-to-SPI dispersion ratio of 4:1 ratio (φ = 80), whereas the smallest droplet size (6.39 µm) was noticed at the 1:4 ratio. During the 7-day storage period, the emulsions with a 4:1 ratio (φ = 80) showed the lowest droplet size increase (from 23 µm to 25.58 µm). In contrast, the emulsions with a 1:1 ratio displayed the highest increase (from 19.39 µm to 74.29 µm). Creaming index results revealed that emulsions with a 4:1 ratio (φ = 80) showed no signs of creaming and phase separation than all other treatments (p < 0.05). Backscattering fluctuations (ΔBS) and turbiscan stability index (TSI) showed that emulsions with 4:1, 2:1, and 1:1 oil-to-SPI dispersion ratios had consistent ΔBS curves with higher and TSI curves with lower values. Optical microscopy, confocal laser scanning, and cryo-scanning electron microscopy revealed that emulsions with oil-to-SPI dispersion ratios of 4:1 and 2:1 had well-organized structures with no visible coalescence. Macromorphological and microrheological investigations demonstrated that emulsions with 80% oil content had the highest viscosity, both moduli, elasticity index, macroscopic viscosity index, and the lowest fluidity index and solid-liquid balance values. Moreover, these emulsions were more resistant to centrifugation and storage environments. In conclusion, the study determined that flaxseed-derived DAG-based high internal phase Pickering emulsions (φ = 80) had superior stability, improved viscoelasticity, and better rheological properties.


Assuntos
Linho , Linho/química , Emulsões/química , Proteínas de Soja/química , Diglicerídeos
13.
Meat Sci ; 210: 109434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244289

RESUMO

The effects of catechin on the emulsification and oxidation stability of myofibrillar protein-diacylglycerol (MP-DAG) emulsions were investigated. Lard samples, namely, lard, unpurified glycerolytic lard (UGL), and purified glycerolytic lard (PGL), were used as oil phases. The emulsifying effects of UGL- and PGL-based emulsions were superior to those of lard-based emulsions (P < 0.05). The emulsifying properties of MP-DAG emulsions increased initially and then decreased with a rise in the catechin concentration, with 20-µmol/g catechin exhibiting optimal emulsification activity and stability (P < 0.05). The droplets were tinier and evenly distributed, and the absolute ξ-potential values and rheological characteristics reached their maximum at a catechin concentration of 20 µmol/g. The formation of thiobarbituric acid-reactive substances and carbonyls declined significantly with the growth of catechin levels (P < 0.05), which confirmed that the oxidation of MPs and lipids was reduced efficiently by catechin. This study provides an idea for improving the emulsification and oxidation stability of MP-DAG emulsions, which offers a theoretical basis for the application of MP-DAG emulsions in meat products.


Assuntos
Catequina , Emulsões , Catequina/farmacologia , Diglicerídeos , Oxirredução , Proteínas Musculares
14.
Food Res Int ; 181: 114115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448099

RESUMO

The purpose of the present study was to investigate the gelling properties and in vitro digestibility of myofibrillar protein (MP) gels under low-salt condition as mediated by different concentrations of thermo-reversible curdlan gels (TRC) or thermo-irreversible curdlan gels (TIRC). The results showed that the incorporation of TRC or TIRC obviously improved the gel strength and water holding capacity of MP gels (P < 0.05). Those properties were most improved by adding 0.3 % TRC or TIRC with gel strength of 0.18 N or 0.17 N and WHC of 54.85 % or 49.05 %. Meanwhile, both TRC and TIRC promoted the transformation of α-helix into ß-sheet, as well as hydrophobic interactions and disulfide bonds, which are the main forces for the maintenance of the MP gels. The microstructure revealed that the formation of dense and uniform protein network structures can be promoted by the addition of TRC or TIRC. The different modes of interaction between TRC or TIRC and MP resulted in different microstructures of the MP gels. Furthermore, incorporation of TRC or TIRC significantly reduced in vitro protein digestibility, especially for the 0.3 % (w/w) form (P < 0.05). Meanwhile, MP gels had the lowest in vitro protein digestibility after the addition of TRC (66.67 %) compared to the form of TIRC (70.93 %). Therefore, our present study indicated that incorporation form of TRC or TIRC have distinct implications on regulating the gelling properties and in vitro digestibility of MP gels under low-salt condition.


Assuntos
Cloreto de Sódio , beta-Glucanas , Cloreto de Sódio na Dieta , Géis
15.
Food Res Int ; 182: 114177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519164

RESUMO

This work investigated the effect of ultrasound (US) treatment synergized with κ-carrageenan (KC) on the gel properties, structural characteristics and microstructures of myofibrillar protein (MP) gel. The results demonstrated that simply adding KC enhanced the gel strength and water holding capacity (WHC) of MP gels. Moreover, the gel strength and WHC of MP gels were increased by 56.67 % and 76.19 % via 20 min US treatment synergized with KC, which was mainly attributed to the changes in sulfhydryl content, surface hydrophobicity, and fluorescence intensity of MP gels. Based on the results of molecular docking and secondary structure, it can be hypothesized that the synergistic effect resulted in the rearrangement of the proteins, which altered the interaction site between MP gels and KC, accompanied by stronger binding. Furthermore, the microstructural results indicated that moderate US treatment (20 min) facilitated the production of a more compact and denser MP gels matrix with uniformly sized and distributed pores. However, excessive US treatment (40 and 50 min) caused the MP gels to form looser and disordered gel structure, which reduced the gel strength and WHC. This study suggested that combining of US and KC was a potential tactic to enhance the gelling properties of heat-induced MP gels.


Assuntos
Temperatura Alta , Proteínas Musculares , Carragenina , Proteínas Musculares/química , Simulação de Acoplamento Molecular , Reologia , Géis/química , Água/química
16.
Meat Sci ; 215: 109554, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38838569

RESUMO

This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and ß-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.


Assuntos
Carragenina , Manipulação de Alimentos , Géis , Interações Hidrofóbicas e Hidrofílicas , Produtos da Carne , Reologia , Carragenina/química , Animais , Géis/química , Produtos da Carne/análise , Manipulação de Alimentos/métodos , Proteínas Musculares/química , Suínos , Miofibrilas/química
17.
Food Res Int ; 176: 113846, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163692

RESUMO

The aim of this study was to investigate the effect of replacing different amounts (5 %, 10 %, 15 %, 20 % and 25 %) of lean meat with Tenebrio molitor larvae protein (TMLP) on the quality profiles of hybrid frankfurters. The results showed that there were no obvious differences in moisture, protein or fat content of all the hybrid frankfurters (P > 0.05), only a higher substitution rate (from 10 % to 25 %) resulted in a higher ash content than the control group (P < 0.05). With the increasing replacement rate (5 %, 10 % and 15 %), the cooking loss of the hybrid frankfurters showed the similar effects as the control group (P > 0.05), whereas the higher replacement rates of 20 % and 25 % obviously decreased the emulsion stability of the hybrid frankfurters. Moreover, with lower substitution rate (5 %, 10 % and 15 %) there were no significant differences in cooking loss between the hybrid frankfurters and the control group (P > 0.05), whereas the higher substitution rates (20 % and 25 %) obviously increased the cooking loss of the hybrid frankfurters (P < 0.05). Meanwhile, as the level of substitution increased, the hybrid frankfurters had higher digestibility, poorer texture than the standard frankfurters, as well as the rheological behaviour of hybrid meat batters (P < 0.05). The results showed that a moderate level (15 %) of TMLP was used to replace lean pork could be potentially and successfully be used to produce hybrid frankfurters.


Assuntos
Produtos da Carne , Tenebrio , Animais , Estudos de Viabilidade , Cor , Culinária , Produtos da Carne/análise
18.
Int J Biol Macromol ; 257(Pt 2): 128659, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101671

RESUMO

The present work was aimed to investigate the effects of incorporating κ-carrageenan into myofibrillar protein (MP) as a dry powder (CP) or water suspension (CW) and the ionic strength (0.3 or 0.6 M sodium chloride (NaCl)) on MP physicochemical and gelling properties. The results indicated that incorporation of either CP or CW significantly increased turbidity, surface hydrophobicity, particle size and rheological behaviour of MP. In contrast, the protein solubility and fluorescence intensity of MP decreased when added with each form of κ-carrageenan (P < 0.05). These observed effects improved MP's gelling properties and produced a more compact and homogenous gel network after heating treatment. Moreover, the addition of CW rendered higher gel strength, water holding capacity and intermolecular interactions, such as ionic, hydrogen and disulphide bonds and hydrophobic interactions in MP gel compared with those added with CP, especially for 0.3 M NaCl (P < 0.05). Furthermore, addition of CW significantly decreased the α-helix content of MP gels (P < 0.05), which mainly contributing to the transformation from a random structure to an organised configuration. In addition, a higher NaCl concentration (0.6 M) enhanced the gelling properties of MP gels compared with 0.3 M NaCl concentration in the presence of each form of κ-carrageenan. Therefore, our present study indicated that incorporation form of κ-carrageenan and ionic strength have distinctive effects on regulating physicochemical characteristics and improves gelling properties of MP.


Assuntos
Cloreto de Sódio , Água , Carragenina/química , Géis/química , Concentração Osmolar , Água/química
19.
Food Chem ; 398: 133874, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964567

RESUMO

The influence of ultrasound-assisted immersion freezing (UF), immersion freezing (IF), and air freezing (AF) on the protein oxidation, structure, and thermal stability of chicken breast during frozen storage was evaluated in this study. Compared to IF and AF samples, the UF samples had a lower carbonyl content, dityrosine content, and surface hydrophobicity of myofibrillar protein (MP) (P < 0.05), as well as a higher free amino group content and total and reactive sulfhydryl content (P < 0.05). Moreover, UF significantly delayed the deterioration of protein secondary and tertiary structures and the decrease in protein thermal stability during frozen storage (P < 0.05). Additionally, the UF samples at 180 days had similar protein structures and quality characteristics to the IF samples at 90 days or the AF samples at 60 days. Overall, UF treatment can effectively retard protein oxidation, protein structure deterioration, and protein thermal stability loss caused by frozen storage.


Assuntos
Galinhas , Proteínas , Animais , Congelamento , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica
20.
Food Chem ; 404(Pt B): 134692, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283318

RESUMO

This study aimed to investigate the effect of different concentrations of Staphylococcus (S.) xylosus protease on the proteolysis, quality characteristics, flavor development, and sensory attributes of dry sausages. The results indicated that S. xylosus protease significantly decreased (P < 0.05) the moisture content, water activity, shear force, pH value, lipid and protein oxidation of the dry sausages. Moreover, the addition of S. xylosus protease to Harbin dry sausages accelerated meat proteins proteolysis and development of key differential volatile compounds such as ketones, acids, and esters. The best sensory score was obtained at 1.2 g/kg. Additionally, molecular docking analysis suggested that hydrogen bonds and hydrophobic interactions force were the mainly driving forces in the S. xylosus protease-myosin complex. This study revealed that the addition of S. xylosus protease to Harbin dry sausages is a novel strategy for improving their quality and flavor.


Assuntos
Produtos da Carne , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Proteólise , Simulação de Acoplamento Molecular , Fermentação , Produtos da Carne/análise , Staphylococcus/metabolismo , Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa