Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nat Chem Biol ; 16(3): 267-277, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31959966

RESUMO

A long-standing mystery shrouds the mechanism by which catalytically repressed receptor tyrosine kinase domains accomplish transphosphorylation of activation loop (A-loop) tyrosines. Here we show that this reaction proceeds via an asymmetric complex that is thermodynamically disadvantaged because of an electrostatic repulsion between enzyme and substrate kinases. Under physiological conditions, the energetic gain resulting from ligand-induced dimerization of extracellular domains overcomes this opposing clash, stabilizing the A-loop-transphosphorylating dimer. A unique pathogenic fibroblast growth factor receptor gain-of-function mutation promotes formation of the complex responsible for phosphorylation of A-loop tyrosines by eliminating this repulsive force. We show that asymmetric complex formation induces a more phosphorylatable A-loop conformation in the substrate kinase, which in turn promotes the active state of the enzyme kinase. This explains how quantitative differences in the stability of ligand-induced extracellular dimerization promotes formation of the intracellular A-loop-transphosphorylating asymmetric complex to varying extents, thereby modulating intracellular kinase activity and signaling intensity.


Assuntos
Domínio AAA/fisiologia , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Domínio AAA/genética , Domínio Catalítico , Dimerização , Ativação Enzimática , Humanos , Ligantes , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Tirosina Quinases/fisiologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Tirosina/química
2.
Exp Cell Res ; 393(1): 112060, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407729

RESUMO

Compared with traditional chemotherapeutic drugs, targeted therapeutic medicine has the advantages of high efficacy and less toxic side effects. However, in clinical practice for treatment of colorectal cancer, the primary and acquired resistance of these medicines limits their effectiveness in targeted therapy, therefore impedes the development of precision medicine and personalized therapy. Currently, there are limited number of drugs for targeted therapy of colorectal cancer, mainly monoclonal antibodies against EGFR or VEGFR inhibitors. Trametinib, a MEK inhibitor, has been applied in melanoma patient successfully, but not been used in clinical treatment of colorectal cancer because of its drug resistance. To identify the resistance mechanism of colorectal cancer cells to trametinib and find useful chemical combination to overcome the resistance, we screened primary and acquired cell line first and then tested multiple synergistic drug combinations by using the Chou-Talalay method. We obtained the primary resistant cell lines SW480, CW-2 and the acquired drug-resistant cell line RKO-R as well as a synergistic combination of trametinib and GSK2126458. This combination inhibits the colony formation of colorectal cancer cells and the growth of xenograft tumors in nude mice. Mechanistic analysis showed that trametinib can activate the alternative PI3K-AKT signaling pathway while inhibiting the MAPK pathway, which may be one of the molecular mechanisms of primary and acquired trametinib tolerance in colorectal cancer cells. Importantly, this bypass activation can be blocked by GSK2126458. These results suggest that a combination of trametinib and GSK2126458 is an effective approach for treating colorectal cancer resistance to trametinib.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos Endogâmicos BALB C
3.
Am J Pathol ; 189(5): 1105-1120, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30862482

RESUMO

Mitochondrial ribosome proteins (MRPs), which are encoded by the nuclear genomic DNA, are important for mitochondrial-encoded protein synthesis and mitochondrial function. Emerging evidence suggests that several MRPs also exhibit important extra-mitochondrial functions, such as involvement in apoptosis, protein biosynthesis, and signal transduction. In this study, we demonstrate a significant role of MRP L35 (MRPL35) in colorectal cancer (CRC). The expression of MRPL35 was higher in CRC tissues than in matched cancer-adjacent tissues and higher in CRC cells than in normal mucosal epithelial cells. Higher MRPL35 expression in CRC tissue correlated with shorter overall survival for CRC patients. In vitro, down-regulation of MRPL35 led to increased production of reactive oxygen species (ROS) together with DNA damage, loss of cell proliferation, G2/M arrest, a decrease in mitochondrial membrane potential, apoptosis, and autophagy induction. MRPL35 knockdown inhibited tumor proliferation in a CRC xenograft nude mouse model. Furthermore, overexpression of MRPL35 or treatment of cells with the ROS scavenger, N-acetyl cysteine, abrogated ROS production, cell cycle arrest, and apoptosis in vitro. These findings suggest that MRPL35 plays an essential role in the development of CRC and may be a potential therapeutic target for CRC.


Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Colorretais/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Biomarcadores Tumorais/genética , Ciclo Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Mitocondriais/genética , Prognóstico , Proteínas Ribossômicas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Exp Cell Res ; 383(1): 111496, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306654

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common types of cancer worldwide, and there is currently no effective therapeutic strategy in clinical practice. Gene therapy has great potential for decreasing tumor-induced mortality but has been clinically limited because of the lack of tumor-specific targets and insufficient gene transfer. The study of targeted transport of therapeutic genes in HCC treatment seems to be very important. In this study, we evaluated a gene therapy approach targeting HCC using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system in HCC cell lines and in an in vivo human HCC xenograft mouse model. GP73-modified liposomes targeted gene delivery to the tumor tissue, and the survivin promoter drove HSVtk expression in the HCC cells. Our results showed that the survivin promoter was specifically activated in tumor cells and HSVtk was expressed selectively in tumor cells. Combined with GCV treatment, HSVtk expression resulted in suppression of HCC cell proliferation via enhancing apoptosis. Moreover, tail vein injection of GP73-HSVtk significantly suppressed the growth of xenograft tumors through an apoptosis-dependent pathway and extended the survival of tumor-bearing mice without damaging the mice liver functions. Taken together, this study demonstrates an effective cancer-specific gene therapy strategy using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system for HCC that can be further developed for future clinical trials.


Assuntos
Carcinoma Hepatocelular/terapia , Terapia Genética , Lipossomos/administração & dosagem , Neoplasias Hepáticas/terapia , Proteínas de Membrana/química , Survivina/genética , Timidina Quinase/genética , Animais , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Ganciclovir/administração & dosagem , Vetores Genéticos/administração & dosagem , Humanos , Lipossomos/química , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Regiões Promotoras Genéticas , Simplexvirus/enzimologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Molecules ; 24(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754629

RESUMO

Treatment of colorectal cancer mostly relies on traditional therapeutic approaches, such as surgery and chemotherapy. Limited options of targeted therapy for colorectal cancer narrowly focus on blocking cancer-generic targets VEGFR and EGFR. Identifying the oncogenic drivers, understanding their contribution to proliferation, and finding inhibitors to block such drivers are the keys to developing targeted therapy for colorectal cancer. In this study, ten colorectal cancer cell lines were screened against a panel of protein kinase inhibitors blocking key oncogenic signaling pathways. The results show that four of the 10 cell lines did not respond to any kinase inhibitors significantly, the other six were mildly inhibited by AZD-6244, BMS-754807, and/or dasatinib. Mechanistic analyses demonstrate that these inhibitors independently block the MAP kinase pathway, IR/IGF-1R/AKT pathway, and Src kinases, suggesting a multi-driver nature of proliferative signaling in these cells. Most of these cell lines were potently and synergistically inhibited by pair-wise combinations of these drugs. Furthermore, seven of the 10 cell lines were inhibited by the triple combination of AZD-6244/BMS-754807/dasatinib with IC50's between 10 and 84 nM. These results suggest that combination targeted therapy may be an effective strategy against colorectal cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzimidazóis/farmacologia , Neoplasias Colorretais/metabolismo , Dasatinibe/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Pirazóis/farmacologia , Triazinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Terapia de Alvo Molecular , Fosfoproteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1 , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Molecules ; 24(7)2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959969

RESUMO

Ponatinib is a multi-target protein tyrosine kinase inhibitor, and its effects on hepatocellular carcinoma cells have not been previously explored. In the present study, we investigated its effects on hepatocellular carcinoma cell growth and the underlying mechanisms. Toward SK-Hep-1 and SNU-423 cells, ponatinib induces apoptosis by upregulation of cleaved caspase-3 and -7 and promotes cell cycle arrest in the G1 phase by inhibiting CDK4/6/CyclinD1 complex and phosphorylation of retinoblastoma protein. It inhibits the growth-stimulating mitogen-activated protein (MAP) kinase pathway, the phosphorylation of Src on both negative and positive regulation sites, and Jak2 and Stat3 phosphorylation. Surprisingly, it also activates the PDK1, the protein kinase B (Akt), and the mechanistic target of rapamycin (mTOR) signaling pathway. Blocking mTOR signaling strongly sensitizes cells to inhibition by ponatinib and makes ponatinib a much more potent inhibitor of hepatocellular carcinoma cell proliferation. These findings demonstrate that ponatinib exerts both positive and negative effects on hepatocellular cell proliferation, and eliminating its growth-stimulating effects by drug combination or potentially by chemical medication can significantly improve its efficacy as an anti-cancer drug.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Serina-Treonina Quinases TOR/metabolismo
7.
Bioorg Med Chem Lett ; 23(11): 3230-4, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23602444

RESUMO

A number of cyclic and linear peptides containing various combinations of amino acids were evaluated for their Src kinase inhibitory potency. Among all the peptides, cyclic decapeptide C[RW]5 containing alternative arginine (R) and tryptophan (W) residues was found to be the most potent Src kinase inhibitor. C[RW]5 showed higher inhibitory activity (IC50=2.8 µM) than C[KW]5, L(KW)5, C[RW]4, and C[RW]3 with IC50 values of 46.9, 69.1, 21.5, and 25.0 µM, respectively, as determined in a fluorescence intensity-based assay. Thus, the cyclic nature, the presence of arginine, ring size, and the number of amino acids in the structure of the peptide were found to be critical in Src kinase inhibitory potency. The IC50 value of C[RW]5 was found to be 0.8 µM in a radioactive assay using [γ-(32)P]-ATP and polyE4Y as the substrate. C[RW]5 was a noncompetitive Src kinase inhibitor, showing approximately fourfold more selectivity towards Src than Abl.


Assuntos
Arginina/química , Peptídeos Cíclicos/química , Inibidores de Proteínas Quinases/química , Triptofano/química , Quinases da Família src/antagonistas & inibidores , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Cinética , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/metabolismo
8.
Biomolecules ; 13(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37627272

RESUMO

Triple negative breast cancer (TNBC) is a heterogeneous group of breast cancers characterized by their lack of estrogen receptors, progesterone receptors, and the HER2 receptor. They are more aggressive than other breast cancer subtypes, with a higher mean tumor size, higher tumor grade, the worst five-year overall survival, and the highest rates of recurrence and metastasis. Developing targeted therapies for TNBC has been a major challenge due to its heterogeneity, and its treatment still largely relies on surgery, radiation therapy, and chemotherapy. In this review article, we review the efforts in developing targeted therapies for TNBC, discuss insights gained from these efforts, and highlight potential opportunities going forward. Accumulating evidence supports TNBCs as multi-driver cancers, in which multiple oncogenic drivers promote cell proliferation and survival. In such multi-driver cancers, targeted therapies would require drug combinations that simultaneously block multiple oncogenic drivers. A strategy designed to generate mechanism-based combination targeted therapies for TNBC is discussed.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Terapia Combinada , Proliferação de Células , Receptores de Estrogênio
9.
Front Cell Dev Biol ; 11: 1148352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936693

RESUMO

Protein tyrosine kinases (PTKs) are a large enzyme family that regulates many cellular processes. The key to their broad role in signaling is their tunable substrate specificity and regulatory mechanisms that allow each to respond to appropriate regulatory signals and phosphorylate the correct physiological protein substrates. Thus, in addition to the general PTK catalytic platform, each PTK acquires unique structural motifs that confer a unique combination of catalytic and regulatory properties. Understanding the structural basis for these properties is essential for understanding and manipulating the PTK-based signaling networks in normal and cancer cells. C-terminal Src kinase (Csk) and its homolog, Csk-homologous kinase (Chk), phosphorylate Src family kinases on a C-terminal Tyr residue and negatively regulate their kinase activity. While this regulatory function is biologically essential, Csk and Chk have also been excellent model PTKs for dissecting the structural basis of PTK catalysis and regulation. In this article, we review the structure-function studies of Csk and Chk that shed light on the regulatory and catalytic mechanisms of protein tyrosine kinases in general.

10.
Cancers (Basel) ; 15(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136350

RESUMO

The BRAF V600E mutation is frequently found in cancer. It activates the MAPK pathway and promotes cancer cell proliferation, making BRAF an excellent target for anti-cancer therapy. While BRAF-targeted therapy is highly effective for melanoma, it is often ineffective against other cancers harboring the BRAF mutation. In this study, we evaluate the effectiveness of a proteolysis targeting chimera (PROTAC), SJF-0628, in directing the degradation of mutated BRAF across a diverse panel of cancer cells and determine how these cells respond to the degradation. SJF-0628 treatment results in the degradation of BRAF V600E and a decrease in Mek activation in all cell lines tested, but the effects of the treatment on cell signaling and cell proliferation are cell-line-specific. First, BRAF degradation killed DU-4475 and Colo-205 cells via apoptosis but only partially inhibited the proliferation of other cancer cell lines. Second, SJF-0628 treatment resulted in co-degradation of MEK in Colo-205 cells but did not have the same effect in other cell lines. Finally, cell lines partially inhibited by BRAF degradation also contain other oncogenic drivers, making them multi-driver cancer cells. These results demonstrate the utility of a PROTAC to direct BRAF degradation and reveal that multi-driver oncogenesis renders some colorectal cancer cells resistant to BRAF-targeted treatment.

11.
Proc Natl Acad Sci U S A ; 106(13): 5070-5, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19273857

RESUMO

Accumulating evidence suggests that protein tyrosine phosphorylation-based signaling pathways are under the regulation of reactive oxygen species. Although protein tyrosine phosphatases are directly regulated by reversible oxidation, it is not clear whether protein tyrosine kinases (PTKs) are also directly regulated by reduction/oxidation (redox). In this study we report a mechanism of direct oxidative inactivation specific for the PTKs in the Src and fibroblast growth factor receptor (FGFR) families, key enzymes in mammalian signal transduction. Src is fully active when reduced and retains 8-25% of the full activity toward various substrates when oxidized. This inactivation is caused by oxidation of a specific cysteine residue (Cys-277), which results in homodimerization of Src linked by a disulfide bridge. Cys-277 is located in the Gly loop in the catalytic domain. This cysteine residue is conserved only in 8 of the >90 PTKs in the human kinome, including 3 of the 10 Src family kinases and all 4 kinases of the FGFR family. FGFR1 is also reversibly regulated by redox because of this cysteine residue, whereas Csk, a PTK that lacks a cysteine residue at the corresponding position, is not similarly regulated. These results demonstrate a mechanism of direct redox regulation conserved in certain specific PTKs.


Assuntos
Cisteína/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Proteína Tirosina Quinase CSK , Oxirredução , Espécies Reativas de Oxigênio , Transdução de Sinais , Quinases da Família src
12.
Cancers (Basel) ; 14(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36011019

RESUMO

There are no signaling-based targeted therapies for triple-negative breast cancer. The development of targeted cancer therapy relies on identifying oncogenic signaling drivers, understanding their contributions to oncogenesis and developing inhibitors to block such drivers. In this study, we determine that DU-4475 is a mono-driver cancer cell line relying on BRAF and the mitogen-activated protein kinase pathway for viability and proliferation. It is fully and lethally inhibited by BRAF or Mek inhibitors at low nM concentrations, but it is resistant to inhibitors targeting other signaling pathways. The inhibitory lethality caused by blocking Mek or BRAF is through apoptosis. In contrast, MDA-MB-231 is a multi-driver triple-negative breast cancer cell line dependent on both Src and the KRAS-activated mitogen-activated kinase pathway for proliferation and viability. Blocking each pathway alone only partially inhibits cell proliferation without killing them, but the combination of dasatinib, an Src inhibitor, and trametinib, a Mek inhibitor, achieves synthetic lethality. The combination is highly potent, with an IC50 of 8.2 nM each, and strikingly synergistic, with a combination index of less than 0.003 for 70% inhibition. The synthetic lethality of the drug combination is achieved by apoptosis. These results reveal a crucial difference between mono-driver and multi-driver cancer cells and suggest that pharmacological synthetic lethality may provide a basis for effectively inhibiting multi-driver cancers.

13.
Cancers (Basel) ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349331

RESUMO

Triple negative breast cancer is a collection of heterogeneous breast cancers that are immunohistochemically negative for estrogen receptor, progesterone receptor, and ErbB2 (due to deletion or lack of amplification). No dominant proliferative driver has been identified for this type of cancer, and effective targeted therapy is lacking. In this study, we hypothesized that triple negative breast cancer cells are multi-driver cancer cells, and evaluated a biphasic mathematical model for identifying potent and synergistic drug combinations for multi-driver cancer cells. The responses of two triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to a panel of targeted therapy drugs were determined over a broad range of concentrations. The analyses of the drug responses by the biphasic mathematical model revealed that both cell lines were indeed dependent on multiple drivers, and inhibitors of individual drivers caused a biphasic response: a target-specific partial inhibition at low nM concentrations, and an off-target toxicity at µM concentrations. We further demonstrated that combinations of drugs, targeting each driver, cause potent, synergistic, and cell-specific cell killing. Immunoblotting analysis of the effects of the individual drugs and drug combinations on the signaling pathways supports the above conclusion. These results support a multi-driver proliferation hypothesis for these triple negative breast cancer cells, and demonstrate the applicability of the biphasic mathematical model for identifying effective and synergistic targeted drug combinations for triple negative breast cancer cells.

14.
Cancers (Basel) ; 12(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069833

RESUMO

Quantifying the response of cancer cells to a drug, and understanding the mechanistic basis of the response, are the cornerstones for anti-cancer drug discovery. Classical single target-based IC50 measurements are inadequate at describing cancer cell responses to targeted drugs. In this study, based on an analysis of targeted inhibition of colorectal cancer cell lines, we develop a new biphasic mathematical model that accurately describes the cell-drug response. The model describes the drug response using three kinetic parameters: ratio of target-specific inhibition, F1, potency of target-specific inhibition, Kd1, and potency of off-target toxicity, Kd2. Determination of these kinetic parameters also provides a mechanistic basis for predicting effective combination targeted therapy for multi-driver cancer cells. The experiments confirmed that a combination of inhibitors, each blocking a driver pathway and having a distinct target-specific effect, resulted in a potent and synergistic blockade of cell viability, improving potency over mono-agent treatment by one to two orders of magnitude. We further demonstrate that mono-driver cancer cells represent a special scenario in which F1 becomes nearly 100%, and the drug response becomes monophasic. Application of this model to the responses of >400 cell lines to kinase inhibitor dasatinib revealed that the ratio of biphasic versus monophasic responses is about 4:1. This study develops a new mathematical model of quantifying cancer cell response to targeted therapy, and suggests a new framework for developing rational combination targeted therapy for colorectal and other multi-driver cancers.

15.
Toxicology ; 439: 152443, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32278789

RESUMO

Stavudine is an anti-AIDS drug widely used to prevent HIV transmission from pregnant mothers to the fetuses in underdeveloped countries for its low price. However, there is still a controversy on whether stavudine affects embryo development. In the current study, embryotoxicity of stavudine was evaluated using cultured mouse embryos with the concentrations: 5, 10, 15 µM and vehicle control. The data indicated that the effect of stavudine was dose-dependent at early neurogenesis. Stavudine exposure reduced somite numbers, yolk sac diameter, crown-rump length, and increased the rate of embryonic degeneration compared with the control. We chose the lowest but clearly toxic concentration: 5 µM to investigate the molecular mechanisms of the damage. At the molecular level, stavudine produced DNA damage, increased the levels of the phospho-CHK1 and cleaved-caspase-3, and decreased the expression level of proliferating cell nuclear antigen. These changes indicated that stavudine caused a coordinated DNA damage response, inhibited cell proliferation, and induced apoptosis in the embryos. Collectively these results suggest that stavudine exposure disturbs the embryonic development, and its use in pregnant mothers should be re-examined.


Assuntos
Anormalidades Induzidas por Medicamentos/patologia , Fármacos Anti-HIV/toxicidade , Apoptose/efeitos dos fármacos , Estavudina/toxicidade , Animais , Caspase 3/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/efeitos dos fármacos , Dano ao DNA , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Gravidez , Antígeno Nuclear de Célula em Proliferação/efeitos dos fármacos , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/patologia
16.
Cancer Gene Ther ; 27(10-11): 754-767, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31645678

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent malignant tumour with high global morbidity and mortality associated with its multiple aetiologies, poor prognosis, resistance to chemotherapeutic drugs and high rate of recurrence. Here, we evaluated a gene therapy strategy that targets HCC using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system in HCC cell lines and in an in vivo human HCC xenograft mouse model. Apolipoprotein E (ApoE)-modified liposomes were used for targeted gene delivery to the tumour tissue, and the survivin promoter was used to drive HSVtk expression in HCC cells. Our results showed that the survivin promoter was specifically activated in tumour cells, and HSVtk was expressed selectively in tumour cells. In combination with GCV treatment, HSVtk expression resulted in the inhibition of HCC cell proliferation via enhanced apoptosis. In addition, tail vein injection of ApoE-HSVtk significantly suppressed the growth of xenograft tumours through an apoptosis-dependent pathway and extended the survival time of tumour-bearing mice. In summary, this study illustrates an effective cancer-specific gene therapy strategy for HCC that can be further developed for future clinical trials.


Assuntos
Apolipoproteínas E/metabolismo , Carcinoma Hepatocelular/genética , Terapia Genética/métodos , Lipossomos/metabolismo , Neoplasias Hepáticas/genética , Simplexvirus/patogenicidade , Survivina/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Transfecção
17.
Bioorg Chem ; 37(4): 133-42, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19539345

RESUMO

Phosphopeptide pTyr-Glu-Glu-Ile (pYEEI) has been introduced as an optimal Src SH2 domain ligand. Peptides, Ac-K(IDA)pYEEIEK(IDA) (1), Ac-KpYEEIEK (2), Ac-K(IDA)pYEEIEK (3), and Ac-KpYEEIEK(IDA) (4), containing 0-2 iminodiacetate (IDA) groups at the N- and C-terminal lysine residues were synthesized and evaluated as the Src SH2 domain binding ligands. Fluorescence polarization assays showed that peptide 1 had a higher binding affinity (K(d) = 0.6 microM) to the Src SH2 domain when compared with Ac-pYEEI (K(d) = 1.7 microM), an optimal Src SH2 domain ligand, and peptides 2-4 (K(d) = 2.9-52.7 microM). The binding affinity of peptide 1 to the SH2 domain was reduced by more than 2-fold (K(d) = 1.6 microM) upon addition of Ni(2+) (300 microM), possibly due to modest structural effect of Ni(2+) on the protein as shown by circular dichroism experimental results. The binding affinity of 1 was restored in the presence of EDTA (300 microM) (K(d) = 0.79 microM). These studies suggest that peptides containing IDA groups may be used for designing novel SH2 domain binding ligands.


Assuntos
Iminoácidos/química , Fosfopeptídeos/síntese química , Domínios de Homologia de src , Sequência de Aminoácidos , Ligação Competitiva , Dicroísmo Circular , Polarização de Fluorescência , Corantes Fluorescentes/química , Ligantes , Fosfopeptídeos/química , Ligação Proteica
18.
Protein Sci ; 28(3): 533-542, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30461096

RESUMO

Site-directed mutagenesis is a traditional approach for structure-function analysis of protein tyrosine kinases, and it requires the generation, expression, purification, and analysis of each mutant enzyme. In this study, we report a versatile high throughput bacterial screening system that can identify functional kinase mutants by immunological detection of tyrosine phosphorylation. Two key features of this screening system are noteworthy. First, instead of blotting bacterial colonies directly from Agar plates to nitrocellulose membrane, the colonies were cultured in 96-well plates, and then spotted in duplicate onto the membrane with appropriate controls. This made the screening much more reliable compared with direct colony blotting transfer. A second feature is the parallel use of a protein tyrosine phosphatase (PTP)-expressing host and a non-PTP-expressing host. Because high activity Src mutants are toxic to the host, the PTP system allowed the identification of Src mutants with high activity, while the non-PTP system identified Src mutants with low activity. This approach was applied to Src mutant libraries randomized in the highly conserved HRD motif in the catalytic loop, and revealed that structurally diverse residues can replace the His and Arg residues, while the Asp residue is irreplaceable for catalytic activity.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Quinases da Família src/química , Motivos de Aminoácidos , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , Tirosina/química , Tirosina/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo
19.
Leuk Res ; 78: 12-20, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30660961

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous group of fast growing cancers of myeloid progenitor cells, for which effective treatments are still lacking. Identification of signaling inhibitors that block their proliferation could reveal the proliferative mechanism of a given leukemia cell, and provide small molecule drugs for targeted therapy for AML. In this study, kinase inhibitors that block the majority of cancer signaling pathways are evaluated for their inhibition of two AML cell lines of the M5 subtypes, CTV-1 and THP-1. While THP-1 cells do not respond to any of these inhibitors, CTV-1 cells are potently inhibited by dasatinib, bosutinib, crizotinib, A-770041, and WH-4-23, all potent inhibitors for Lck, a Src family kinase. CTV-1 cells contain a kinase activity that phosphorylates an Lck-specific peptide substrate in an Lck inhibitor-sensitive manner. Furthermore, the Lck gene is over-expressed in CTV-1, and it contains four mutations, two of which are located in regions critical for Lck negative regulation, and are confirmed to activate Lck. Collectively, these results provide strong evidence that mutated and overexpressed Lck is driving CTV-1 proliferation. While Lck activation and overexpression is rare in AML, this study provides a potential therapeutic strategy for treating patients with a similar oncogenic mechanism.


Assuntos
Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo
20.
Cancer Biol Ther ; 20(4): 435-443, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30359168

RESUMO

Ras-specific guanine nucleotide-releasing factor 2 (RasGRF2) is a member of the guanine nucleotide exchange factors family which is expressed in a variety of tissues and cancer. However, the role of RasGRF2 in cancer is less reported, especially in colorectal cancer(CRC). Hence, the present study aimed to investigated the function of RasGRF2 and ways in which it affects tumor progression in CRC samples and cell lines. We first measured RasGRF2 mRNA level in 26 paired tumor and nontumor colon tissues after colon cancer surgical resection, and determined RasGRF2 protein level in 97 paired paraffin-embedded colon cancer tissues, and found that levels of RasGRF2 mRNA and protein were increased in colorectal tumor tissues, compared with adjacent non-tumor tissues. We then examined the effects of RasGRF2 knockdown on proliferation, migration and invasion were analyzed in CRC cells (SW480, HCT116 and LS174T). HCT116 cells with RasGRF2 knockdown were injected into the tail vein in nude mice to yield metastatic model, and tumor metastasis was measured as well. We found that knockdown of RasGRF2 in CRC cells reduced their migration and invasion in vitro and metastasis in mice. Furthermore, we explored the underlying molecular mechanism for RasGRF2-mediated CRC migration and invasion. The results showed that knockdown of RasGRF2 in CRC cells impairing the expression of MMP9 and inhibiting the activation of Src/Akt and NF-κB signaling. We conclude that RasGRF2 plays a role in controlling migration and invasion of CRC and modulates the expression of MMP9 through Src/PI 3-kinase and the NF-κB pathways.


Assuntos
Movimento Celular , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/secundário , Metaloproteinase 9 da Matriz/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/cirurgia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores ras de Troca de Nucleotídeo Guanina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa