RESUMO
A key challenge in aerosol pollution studies and climate change assessment is to understand how atmospheric aerosol particles are initially formed1,2. Although new particle formation (NPF) mechanisms have been described at specific sites3-6, in most regions, such mechanisms remain uncertain to a large extent because of the limited ability of atmospheric models to simulate critical NPF processes1,7. Here we synthesize molecular-level experiments to develop comprehensive representations of 11 NPF mechanisms and the complex chemical transformation of precursor gases in a fully coupled global climate model. Combined simulations and observations show that the dominant NPF mechanisms are distinct worldwide and vary with region and altitude. Previously neglected or underrepresented mechanisms involving organics, amines, iodine oxoacids and HNO3 probably dominate NPF in most regions with high concentrations of aerosols or large aerosol radiative forcing; such regions include oceanic and human-polluted continental boundary layers, as well as the upper troposphere over rainforests and Asian monsoon regions. These underrepresented mechanisms also play notable roles in other areas, such as the upper troposphere of the Pacific and Atlantic oceans. Accordingly, NPF accounts for different fractions (10-80%) of the nuclei on which cloud forms at 0.5% supersaturation over various regions in the lower troposphere. The comprehensive simulation of global NPF mechanisms can help improve estimation and source attribution of the climate effects of aerosols.
RESUMO
A recent study demonstrated near-ambient superconductivity in nitrogen-doped lutetium hydride1. This stimulated a worldwide interest in exploring room-temperature superconductivity at low pressures. Here, by using a high-pressure and high-temperature synthesis technique, we have obtained nitrogen-doped lutetium hydride (LuH2±xNy), which has a dark-blue colour and a structure with the space group [Formula: see text] as evidenced by X-ray diffraction. This structure is the same as that reported in ref. 1, with a slight difference in lattice constant. Raman spectroscopy of our samples also showed patterns similar to those observed in ref. 1. Energy-dispersive X-ray spectroscopy confirmed the presence of nitrogen in the samples. We observed a metallic behaviour from 350 K to 2 K at ambient pressure. On applying pressures from 2.1 GPa to 41 GPa, we observed a gradual colour change from dark blue to violet to pink-red. By measuring the resistance at pressures ranging from 0.4 GPa to 40.1 GPa, we observed a progressively improved metallic behaviour; however, superconductivity was not observed above 2 K. Temperature dependence of magnetization at high pressure shows a very weak positive signal between 100 K and 320 K, and the magnetization increases with an increase in magnetic field at 100 K. All of these are not expected for superconductivity above 100 K. Thus, we conclude the absence of near-ambient superconductivity in this nitrogen-doped lutetium hydride at pressures below 40.1 GPa.
RESUMO
In preparation for a potential pregnancy, the endometrium of the uterus changes into a temporary structure called the decidua. Senescent decidual stromal cells (DSCs) are enriched in the decidua during decidualization, but the underlying mechanisms of this process remain unclear. Here, we performed single-cell RNA transcriptomics on ESCs and DSCs and found that cell senescence during decidualization is accompanied by increased levels of the branched-chain amino acid (BCAA) transporter SLC3A2. Depletion of leucine, one of the branched-chain amino acids, from cultured media decreased senescence, while high leucine diet resulted in increased senescence and high rates of embryo loss in mice. BCAAs induced senescence in DSCs via the p38 MAPK pathway. In contrast, TNFSF14+ decidual natural killer (dNK) cells were found to inhibit DSC senescence by interacting with its ligand TNFRSF14. As in mice fed high-leucine diets, both mice with NK cell depletion and Tnfrsf14-deficient mice with excessive uterine senescence experienced adverse pregnancy outcomes. Further, we found excessive uterine senescence, SLC3A2-mediated BCAA intake, and insufficient TNFRSF14 expression in the decidua of patients with recurrent spontaneous abortion. In summary, this study suggests that dNK cells maintain senescence homeostasis of DSCs via TNFSF14/TNFRSF14, providing a potential therapeutic strategy to prevent DSC senescence-associated spontaneous abortion.
RESUMO
Hepatitis B virus (HBV) exploits the endosomal sorting complexes required for transport (ESCRT)/multivesicular body (MVB) pathway for virion budding. In addition to enveloped virions, HBV-replicating cells nonlytically release non-enveloped (naked) capsids independent of the integral ESCRT machinery, but the exact secretory mechanism remains elusive. Here, we provide more detailed information about the existence and characteristics of naked capsid, as well as the viral and host regulations of naked capsid egress. HBV capsid/core protein has two highly conserved Lysine residues (K7/K96) that potentially undergo various types of posttranslational modifications for subsequent biological events. Mutagenesis study revealed that the K96 residue is critical for naked capsid egress, and the intracellular egress-competent capsids are associated with ubiquitinated host proteins. Consistent with a previous report, the ESCRT-III-binding protein Alix and its Bro1 domain are required for naked capsid secretion through binding to intracellular capsid, and we further found that the ubiquitinated Alix binds to wild type capsid but not K96R mutant. Moreover, screening of NEDD4 E3 ubiquitin ligase family members revealed that AIP4 stimulates the release of naked capsid, which relies on AIP4 protein integrity and E3 ligase activity. We further demonstrated that AIP4 interacts with Alix and promotes its ubiquitination, and AIP4 is essential for Alix-mediated naked capsid secretion. However, the Bro1 domain of Alix is non-ubiquitinated, indicating that Alix ubiquitination is not absolutely required for AIP4-induced naked capsid secretion. Taken together, our study sheds new light on the mechanism of HBV naked capsid egress in viral life cycle.
Assuntos
Capsídeo , Vírus da Hepatite B , Ubiquitina-Proteína Ligases Nedd4 , Ubiquitina-Proteína Ligases , Liberação de Vírus , Humanos , Proteínas de Ligação ao Cálcio , Capsídeo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Liberação de Vírus/fisiologiaRESUMO
Microglia-mediated neuroinflammation is involved in various neurological diseases, including ischemic stroke, but the endogenous mechanisms preventing unstrained inflammation is still unclear. The anti-inflammatory role of transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) in macrophages and microglia has previously been identified. However, the endogenous mechanisms that how NR4A1 restricts unstrained inflammation remain elusive. Here, we observed that NR4A1 is up-regulated in the cytoplasm of activated microglia and localizes to processing bodies (P-bodies). In addition, we found that cytoplasmic NR4A1 functions as an RNA-binding protein (RBP) that directly binds and destabilizes Tnf mRNA in an N6-methyladenosine (m6A)-dependent manner. Remarkably, conditional microglial deletion of Nr4a1 elevates Tnf expression and worsens outcomes in a mouse model of ischemic stroke, in which case NR4A1 expression is significantly induced in the cytoplasm of microglia. Thus, our study illustrates a novel mechanism that NR4A1 posttranscriptionally regulates Tnf expression in microglia and determines stroke outcomes.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Fatores de Transcrição , Microglia , Inflamação , RNA MensageiroRESUMO
The ability to grow properly sized and good quality crystals is one of the cornerstones of single-crystal diffraction, is advantageous in many industrial-scale chemical processes1-3, and is important for obtaining institutional approvals of new drugs for which high-quality crystallographic data are required4-7. Typically, single crystals suitable for such processes and analyses are grown for hours to days during which any mechanical disturbances-believed to be detrimental to the process-are carefully avoided. In particular, stirring and shear flows are known to cause secondary nucleation, which decreases the final size of the crystals (though shear can also increase their quantity8-14). Here we demonstrate that in the presence of polymers (preferably, polyionic liquids), crystals of various types grow in common solvents, at constant temperature, much bigger and much faster when stirred, rather than kept still. This conclusion is based on the study of approximately 20 diverse organic molecules, inorganic salts, metal-organic complexes, and even some proteins. On typical timescales of a few to tens of minutes, these molecules grow into regularly faceted crystals that are always larger (with longest linear dimension about 16 times larger) than those obtained in control experiments of the same duration but without stirring or without polymers. We attribute this enhancement to two synergistic effects. First, under shear, the polymers and their aggregates disentangle, compete for solvent molecules and thus effectively 'salt out' (that is, induce precipitation by decreasing solubility of) the crystallizing species. Second, the local shear rate is dependent on particle size, ultimately promoting the growth of larger crystals (but not via surface-energy effects as in classical Ostwald ripening). This closed-system, constant-temperature crystallization driven by shear could be a valuable addition to the repertoire of crystal growth techniques, enabling accelerated growth of crystals required by the materials and pharmaceutical industries.
RESUMO
Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors1-10. However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film1-4,11,12. Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration13-17 and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.
RESUMO
Earth's inner core is predominantly composed of solid iron (Fe) and displays intriguing properties such as strong shear softening and an ultrahigh Poisson's ratio. Insofar, physical mechanisms to explain these features coherently remain highly debated. Here, we have studied longitudinal and shear wave velocities of hcp-Fe (hexagonal close-packed iron) at relevant pressure-temperature conditions of the inner core using in situ shock experiments and machine learning molecular dynamics (MLMD) simulations. Our results demonstrate that the shear wave velocity of hcp-Fe along the Hugoniot in the premelting condition, defined as T/Tm (Tm: melting temperature of iron) above 0.96, is significantly reduced by ~30%, while Poisson's ratio jumps to approximately 0.44. MLMD simulations at 230 to 330 GPa indicate that collective motion with fast diffusive atomic migration occurs in premelting hcp-Fe primarily along [100] or [010] crystallographic direction, contributing to its elastic softening and enhanced Poisson's ratio. Our study reveals that hcp-Fe atoms can diffusively migrate to neighboring positions, forming open-loop and close-loop clusters in the inner core conditions. Hcp-Fe with collective motion at the inner core conditions is thus not an ideal solid previously believed. The premelting hcp-Fe with collective motion behaves like an extremely soft solid with an ultralow shear modulus and an ultrahigh Poisson's ratio that are consistent with seismic observations of the region. Our findings indicate that premelting hcp-Fe with fast diffusive motion represents the underlying physical mechanism to help explain the unique seismic and geodynamic features of the inner core.
RESUMO
The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.
Assuntos
Cóclea , Células Ciliadas Auditivas , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Mamíferos , Gânglio Espiral da Cóclea , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
HDAC4 is a class II histone deacetylation protein with a well-characterized role in chondrocyte differentiation and skeletal development, and dysregulated expression or haploinsufficiency of Hdac4 leads to skeletal formation and malformation disorders. The early lethality of hdac4 ablation mice hindered further investigation of its role in postnatal bone growth and development. Therefore, this study aims to investigate the significant role of Hdac4 in postnatal endochondral bone development using two mouse models with conditional deletion of Hdac4 in Sp7-expressing osteoprogenitors or chondrocytes and monitored postnatal bone development. The phenotype of Acan-CreERT2; Hdac4fl/fl mice largely resembled that of conventional Hdac4-/- mice. But phenotypic characterizations of mice with Hdac4 inactivation in Sp7-expressing osteoprogenitors (Sp7-Cre; Hdac4fl/fl) showed dwarfism with body and limb shortening and remarkable skeletal defects. Micro-computed tomography analysis of tibias further demonstrated that loss of Hdac4 expression impaired bone formation and microarchitecture, mainly characterized by dysplasia of trabecular and cortical bone in young mice. Our in vivo and in vitro data support a crucial role for Hdac4 in regulating osteoblast proliferation and differentiation, bone matrix protein production, angiogenesis, and ultimately trabecular and cortical bone formation. Moreover, RNA-seq analysis implicated Hdac4 in the regulation of key genes and pathways necessary to affect the accumulation of extracellular matrix, biological processes related to signal transduction, and skeletal growth. Collectively, our data show that postnatal expression of Hdac4 in Sp7-expressing osteoprogenitors provides essential regulatory oversight of endochondral bone formation, bone morphology, and homeostasis.
RESUMO
Lymph node metastasis (LNM) is one of the common features of oral tongue squamous cell carcinoma (OTSCC). LNM is also taken as a sign of advanced OTSCC and poor survival rate. Recently, single-cell RNA sequencing has been applied in investigating the heterogeneity of tumor microenvironment and discovering the potential biomarkers for helping the diagnosis and prognosticating. Pathogenesis of LNM in OTSCC remains unknown. Specifically, cancer-associated fibroblasts (CAFs) and epithelial tumor cells could foster the progression of tumors. Thus, in this study, we aimed to comprehensively analyze the roles of subpopulations of CAFs and epithelial tumor cells in lymph node metastatic OTSCC using the integration of OTSCC single-cell RNA sequencing datasets. Four distinct subtypes of CAFs, namely vascular CAFs, myofibroblast CAFs, inflammatory CAFs, and growth arrest CAFs were successfully discovered in LNM tumor and confirmed the roles of GAS and PTN pathways in the progression of tumor metastasis. In addition, NKAIN2+ epithelial cells and FN1+ epithelial cells specifically exhibited an upregulation of PTN, NRG, MIF, and SPP1 signaling pathways in the metastatic OTSCC. In doing so, we put forth some potential biomarkers that could be utilized for the purpose of diagnosing and prognosticating OTSCC during its metastatic phase and tried to confirm by immunofluorescence assays.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/patologia , Fibroblastos/patologia , Células Epiteliais/patologia , Biomarcadores , Metástase Linfática/patologia , Neoplasias de Cabeça e Pescoço/patologia , Análise de Sequência de RNA , Microambiente TumoralRESUMO
Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-ß, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.
Assuntos
Células Endoteliais , Análise da Expressão Gênica de Célula Única , Camundongos , Animais , Fígado , Envelhecimento/genética , Envelhecimento/metabolismo , Transdução de Sinais/fisiologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismoRESUMO
Rationale: Plasma cell-free DNA levels correlate with disease severity in many conditions. Pretransplant cell-free DNA may risk stratify lung transplant candidates for post-transplant complications. Objectives: To evaluate if pretransplant cell-free DNA levels and tissue sources identify patients at high risk of primary graft dysfunction and other pre- and post-transplant outcomes. Methods: This multicenter, prospective cohort study recruited 186 lung transplant candidates. Pretransplant plasma samples were collected to measure cell-free DNA. Bisulfite sequencing was performed to identify the tissue sources of cell-free DNA. Multivariable regression models determined the association between cell-free DNA levels and the primary outcome of primary graft dysfunction and other transplant outcomes, including Lung Allocation Score, chronic lung allograft dysfunction, and death. Measurements and Main Results: Transplant candidates had twofold greater cell-free DNA levels than healthy control patients (median [interquartile range], 23.7 ng/ml [15.1-35.6] vs. 12.9 ng/ml [9.9-18.4]; P < 0.0001), primarily originating from inflammatory innate immune cells. Cell-free DNA levels and tissue sources differed by native lung disease category and correlated with the Lung Allocation Score (P < 0.001). High pretransplant cell-free DNA increased the risk of primary graft dysfunction (odds ratio, 1.60; 95% confidence interval [CI], 1.09-2.46; P = 0.0220), and death (hazard ratio, 1.43; 95% CI, 1.07-1.92; P = 0.0171) but not chronic lung allograft dysfunction (hazard ratio, 1.37; 95% CI, 0.97-1.94; P = 0.0767). Conclusions: Lung transplant candidates demonstrate a heightened degree of tissue injury with elevated cell-free DNA, primarily originating from innate immune cells. Pretransplant plasma cell-free DNA levels predict post-transplant complications.
Assuntos
Ácidos Nucleicos Livres , Transplante de Pulmão , Disfunção Primária do Enxerto , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Gravidade do PacienteRESUMO
The spread of antibiotic resistance genes (ARGs), particularly those carried on plasmids, poses a major risk to global health. However, the extent and frequency of ARGs transfer in microbial communities among human, animal, and environmental sectors is not well understood due to a lack of effective tracking tools. We have developed a novel fluorescent tracing tool, CRISPR-AMRtracker, to study ARG transfer. It combines CRISPR/Cas9 fluorescence tagging, fluorescence-activated cell sorting, 16S rRNA gene sequencing, and microbial community analysis. CRISPR-AMRtracker integrates a fluorescent tag immediately downstream of ARGs, enabling the tracking of ARG transfer without compromising the host cell's antibiotic susceptibility, fitness, conjugation, and transposition. Notably, our experiments demonstrate that sfGFP-tagged plasmid-borne mcr-1 can transfer across diverse bacterial species within fecal samples. This innovative approach holds the potential to illuminate the dynamics of ARG dissemination and provide valuable insights to shape effective strategies in mitigating the escalating threat of antibiotic resistance.
RESUMO
Intrinsic superconductivity is rarely discovered in sp2-hybridized monolayer carbon allotropes. Here we design a carbon monolayer configured of pentagon, heptagon, and hexagon rings with p2 plane group symmetry. Full-sp2 hybridization is proposed to favor thermal metastability on a low Gibbs free energy. The extremely small thermal expansion coefficient is predicted to the turn negative value to positive with elevating temperature. Carbon polygon structures remain intact at a high thermal temperature of 3,000 K. The high specific surface area is found to approach 2,700 m2/g, with O2-adsorption being advantageous over pristine graphene. We reveal electronic Fermi surfaces mediated by phonon modes of carbon out-of-plane vibrations. By calculating the Eliashberg equation, we evaluate intrinsic superconductivity with a large electron-phonon coupling coefficient. The superconducting transition temperature is estimated to reach 20 K under a high logarithmic average frequency. These first-principles calculations shall stimulate experimentalists' interest in exploring low-dimensional carbon superconductors with gas sensitivity.
RESUMO
An interesting question is whether chalcogen atoms can emulate the role of carbon or boron elements stabilized between two transition metal layers, as observed in MXenes or MBenes. Here, we predict a new family of two-dimensional ternary compounds M4XY2 (where M = Pd, Y, Zr, etc.; X = S, Se, Te; and Y = Cl, Br, I), named M-chalcogene. Through first-principles calculations, we reveal diverse physical properties in these compounds, including superconducting, topological, and magnetic characteristics, where the bilayer transition metals play crucial roles. Moreover, the expected helical edge states and superconducting transition temperatures in Pd4SCl2 can be finely tuned by strains. Additionally, the Ti4SCl2 is predicted to be a topological insulator and shows promise as a gas sensor candidate for certain exotic gases. Our findings expand two-dimensional material families and provide promising platforms for diverse physical phenomena with efficient tunability by external stimuli for various applications.
RESUMO
Ferroelectric memristors hold immense promise for advanced memory and neuromorphic computing. However, they face limitations due to low readout current density in conventional designs with low-conductive ferroelectric channels, especially at the nanoscale. Here, we report a ferroelectric-mediated memristor utilizing a 2D MoS2 nanoribbon channel with an ultrascaled cross-sectional area of <1000 nm2, defined by a ferroelectric BaTiO3 nanoribbon stacked on top. Strikingly, the Schottky barrier at the MoS2 contact can be effectively tuned by the charge transfers coupled with quasi-zero-dimensional polarization charges formed at the two ends of the nanoribbon, which results in distinctive resistance switching accompanied by multiple negative differential resistance showing the high-current density of >104 A/cm2. The associated space charges in BaTiO3 are minimized to â¼3.7% of the polarization charges, preserving nonvolatile polarization. This achievement establishes ferroelectric-mediated nanoscale semiconductor memristors with high readout current density as promising candidates for memory and highly energy-efficient in-memory computing applications.
RESUMO
Integrating high-κ dielectrics with a small equivalent oxide thickness (EOT) with two-dimensional (2D) semiconductors for low-power consumption van der Waals (vdW) heterostructure electronics remains challenging in meeting both interface quality and dielectric property requirements. Here, we demonstrate the integration of ultrathin amorphous HfOx sandwiched within vdW heterostructures by the selective thermal oxidation of HfSe2 precursors. The self-cleaning process ensures a high-quality interface with a low interface state density of 1011-1012 cm-2 eV-1. The synthesized HfOx displays excellent dielectric properties with an EOT of â¼1.5 nm, i.e., a high κ of â¼16, an ultralow leakage current of 10-6 A/cm2, and an impressively high breakdown field of 9.5 MV/cm. This facilitates low-power consumption vdW heterostructure MoS2 transistors, demonstrating steep switching with a low subthreshold swing of 61 mV/decade. This one-step integration of high-κ dielectrics into vdW sandwich heterostructures holds immense potential for developing low-power consumption 2D electronics while meeting comprehensive dielectric requirements.
RESUMO
OBJECTIVE: Hepatitis B surface antigen (HBsAg) loss is the optimal outcome for patients with chronic hepatitis B (CHB) but this rarely occurs with currently approved therapies. We aimed to develop and validate a prognostic model for HBsAg loss on treatment using longitudinal data from a large, prospectively followed, nationwide cohort. DESIGN: CHB patients receiving nucleos(t)ide analogues as antiviral treatment were enrolled from 50 centres in China. Quantitative HBsAg (qHBsAg) testing was prospectively performed biannually per protocol. Longitudinal discriminant analysis algorithm was used to estimate the incidence of HBsAg loss, by integrating clinical data of each patient collected during follow-up. RESULTS: In total, 6792 CHB patients who had initiated antiviral treatment 41.3 (IQR 7.6-107.6) months before enrolment and had median qHBsAg 2.9 (IQR 2.3-3.3) log10IU/mL at entry were analysed. With a median follow-up of 65.6 (IQR 51.5-84.7) months, the 5-year cumulative incidence of HBsAg loss was 2.4%. A prediction model integrating all qHBsAg values of each patient during follow-up, designated GOLDEN model, was developed and validated. The AUCs of GOLDEN model were 0.981 (95% CI 0.974 to 0.987) and 0.979 (95% CI 0.974 to 0.983) in the training and external validation sets, respectively, and were significantly better than those of a single qHBsAg measurement. GOLDEN model identified 8.5%-10.4% of patients with a high probability of HBsAg loss (5-year cumulative incidence: 17.0%-29.1%) and was able to exclude 89.6%-91.5% of patients whose incidence of HBsAg loss is 0. Moreover, the GOLDEN model consistently showed excellent performance among various subgroups. CONCLUSION: The novel GOLDEN model, based on longitudinal qHBsAg data, accurately predicts HBsAg clearance, provides reliable estimates of functional hepatitis B virus (HBV) cure and may have the potential to stratify different subsets of patients for novel anti-HBV therapies.
Assuntos
Antivirais , Antígenos de Superfície da Hepatite B , Hepatite B Crônica , Humanos , Antígenos de Superfície da Hepatite B/sangue , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/sangue , Antivirais/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Prospectivos , China/epidemiologia , Estudos Longitudinais , Vírus da Hepatite B/imunologia , PrognósticoRESUMO
BACKGROUND: Overall Survival (OS) and Progression-Free Interval (PFI) as survival times have been collected in The Cancer Genome Atlas (TCGA). It is of biomedical interest to consider their dependence in pathway detection and survival prediction. We intend to develop novel methods for integrating PFI as condition based on parametric survival models for identifying pathways associated with OS and predicting OS. RESULTS: Based on the framework of conditional probability, we developed a family of frailty-based parametric-models for this purpose, with exponential or Weibull distribution as baseline. We also considered two classes of existing methods with PFI as a covariate. We evaluated the performance of three approaches by analyzing RNA-seq expression data from TCGA for lung squamous cell carcinoma and lung adenocarcinoma (LUNG), brain lower grade glioma and glioblastoma multiforme (GBMLGG), as well as skin cutaneous melanoma (SKCM). Our focus was on fourteen general cancer-related pathways. The 10-fold cross-validation was employed for the evaluation of predictive accuracy. For LUNG, p53 signaling and cell cycle pathways were detected by all approaches. Furthermore, three approaches with the consideration of PFI demonstrated significantly better predictive performance compared to the approaches without the consideration of PFI. For GBMLGG, ten pathways (e.g., Wnt signaling, JAK-STAT signaling, ECM-receptor interaction, etc.) were detected by all approaches. Furthermore, three approaches with the consideration of PFI demonstrated better predictive performance compared to the approaches without the consideration of PFI. For SKCM, p53 signaling pathway was detected only by our Weibull-baseline-based model. And three approaches with the consideration of PFI demonstrated significantly better predictive performance compared to the approaches without the consideration of PFI. CONCLUSIONS: Based on our study, it is necessary to incorporate PFI into the survival analysis of OS. Furthermore, PFI is a survival-type time, and improved results can be achieved by our conditional-probability-based approach.