Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 140(37): 11705-11715, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30110545

RESUMO

Despite the recent surge of interest in inorganic lead halide perovskite nanocrystals, there are still significant gaps in their stability disturbance and the understanding of their destabilization, assembly, and growth processes. Here, we discover that polar solvent molecules can induce the lattice distortion of ligand-stabilized cubic CsPbI3, leading to the phase transition into orthorhombic phase, which is unfavorable for photovoltaic applications. Such lattice distortion triggers the dipole moment on CsPbI3 nanocubes, which subsequently initiates the hierarchical self-assembly of CsPbI3 nanocubes into single-crystalline nanowires. The systematic investigations and in situ monitoring on the kinetics of the self-assembly process disclose that the more amount or the stronger polarity of solvent can induce the more rapid self-assembly and phase transition. These results not only elucidate the destabilization mechanism of cubic CsPbI3 nanocrystals, but also open up opportunities to synthesize and store cubic CsPbI3 for their practical applications in photovoltaics and optoelectronics.

2.
Nano Lett ; 15(5): 3088-95, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25929671

RESUMO

The key challenges in enhancing the power conversion efficiency (PCE) of a quantum dot-sensitized solar cell (QDSSC) are efficiently achieving charge separation at the photoanode and improving the charge transfer, which is limited by the interface between the electrolyte and the counter electrode (CE). Here, hierarchically assembled ITO@Cu2S nanowire arrays with conductive single-crystalline ITO cores and Cu2S nanocrystal shells were designed as efficient QDSSCs CEs. These arrays not only provided an efficient three-dimensional charge transport network but also allowed for the effective deposition of more Cu2S nanocrystals as active sites to catalyze the electrolyte reaction. This design considerably reduced the sheet and charge transfer resistance of the CE, thus decreasing the series resistance and increasing the shunt resistance of the QDSSC. As a result, QDSSCs with this CE exhibited an unprecedentedly high Voc of 0.688 V, a fill factor of 58.39%, and a PCE of 6.12%, which is 21.2% higher than that of the conventional brass/Cu2S CE.

3.
Front Plant Sci ; 14: 1243849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670857

RESUMO

Introduction: Preference and plasticity in nitrogen (N) form uptake are the main strategies with which plants absorb soil N. However, little effort has been made to explore effects of N form acquisition strategies, especially the plasticity, on invasiveness of exotic plants, although many studies have determined the effects of N levels (e.g. N deposition). Methods: To address this problem, we studied the differences in N form acquisition strategies between the invasive plant Solidago canadensis and its co-occurring native plant Artemisia lavandulaefolia, effects of soil N environments, and the relationship between N form acquisition strategy of S. canadensis and its invasiveness using a 15N-labeling technique in three habitats at four field sites. Results: Total biomass, root biomass, and the uptakes of soil dissolved inorganic N (DIN) per quadrat were higher for the invasive relative to the native species in all three habitats. The invader always preferred dominant soil N forms: NH4 + in habitats with NH4 + as the dominant DIN and NO3 - in habitats with NO3 - as the dominant DIN, while A. lavandulaefolia consistently preferred NO3 - in all habitats. Plasticity in N form uptake was higher in the invasive relative to the native species, especially in the farmland. Plant N form acquisition strategy was influenced by both DIN levels and the proportions of different N forms (NO3 -/NH4 +) as judged by their negative effects on the proportional contributions of NH4 + to plant N (f NH4 +) and the preference for NH4 + (ß NH4 +). In addition, total biomass was positively associated with f NH4 + or ß NH4 + for S. canadensis, while negatively for A. lavandulaefolia. Interestingly, the species may prefer to absorb NH4 + when soil DIN and/or NO3 -/NH4 + ratio were low, and root to shoot ratio may be affected by plant nutrient status per se, rather than by soil nutrient availability. Discussion: Our results indicate that the superior N form acquisition strategy of the invader contributes to its higher N uptake, and therefore to its invasiveness in different habitats, improving our understanding of invasiveness of exotic plants in diverse habitats in terms of utilization of different N forms.

4.
Front Plant Sci ; 14: 1169317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143880

RESUMO

Introduction: Atmospheric nitrogen (N) deposition has often been considered as a driver of exotic plant invasions. However, most related studies focused on the effects of soil N levels, and few on those of N forms, and few related studies were conducted in the fields. Methods: In this study, we grew Solanum rostratum, a notorious invader in arid/semi-arid and barren habitats, and two coexisting native plants Leymus chinensis and Agropyron cristatum in mono- and mixed cultures in the fields in Baicheng, northeast China, and investigated the effects of N levels and forms on the invasiveness of S. rostratum. Results: Compared with the two native plants, S. rostratum had higher aboveground and total biomass in both mono- and mixed monocultures under all N treatments, and higher competitive ability under almost all N treatments. N addition enhanced the growth and competitive advantage of the invader under most conditions, and facilitated invasion success of S. rostratum. The growth and competitive ability of the invader were higher under low nitrate relative to low ammonium treatment. The advantages of the invader were associated with its higher total leaf area and lower root to shoot ratio compared with the two native plants. The invader also had a higher light-saturated photosynthetic rate than the two native plants in mixed culture (not significant under high nitrate condition), but not in monoculture. Discussion: Our results indicated that N (especially nitrate) deposition may also promote invasion of exotic plants in arid/semi-arid and barren habitats, and the effects of N forms and interspecific competition need to be taken into consideration when studying the effects of N deposition on invasion of exotic plants.

5.
Nanomaterials (Basel) ; 12(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35683704

RESUMO

The exploration of high-performance and low-cost electrocatalysts towards the oxygen evolution reaction (OER) is essential for large-scale water/seawater splitting. Herein, we develop a strategy involving the in situ generation of a template and pore-former to encapsulate a Ni5P4/Ni2P heterojunction and dispersive FeNi alloy hybrid particles into a three-dimensional hierarchical porous graphitic carbon framework (labeled as Ni5P4/Ni2P-FeNi@C) via a room-temperature solid-state grinding and sodium-carbonate-assisted pyrolysis method. The synergistic effect of the components and the architecture provides a large surface area with a sufficient number of active sites and a hierarchical porous pathway for efficient electron transfer and mass diffusion. Furthermore, a graphitic carbon coating layer restrains the corrosion of alloy particles to boost the long-term durability of the catalyst. Consequently, the Ni5P4/Ni2P-FeNi@C catalyst exhibits extraordinary OER activity with a low overpotential of 242 mV (10 mA cm-2), outperforming the commercial RuO2 catalyst in 1 M KOH. Meanwhile, a scale-up of the Ni5P4/Ni2P-FeNi@C catalyst created by a ball-milling method displays a similar level of activity to the above grinding method. In 1 M KOH + seawater electrolyte, Ni5P4/Ni2P-FeNi@C also displays excellent stability; it can continuously operate for 160 h with a negligible potential increase of 2 mV. This work may provide a new avenue for facile mass production of an efficient electrocatalyst for water/seawater splitting and diverse other applications.

6.
Nanoscale ; 12(14): 7759-7765, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211703

RESUMO

Hybrid organic-inorganic perovskite (HOIP) materials have caught significant attention in photovoltaics and photoelectronics for their outstanding photovoltaic properties. However, their instability to various environment, such as illumination, temperature, moisture and oxygen, hinders their way to commercialization. To figure out the interaction mechanism between H2O and CH3NH3PbI3 (MAPbI3), extensive theoretical studies have been carried out; however, the experimental results are insufficient and inconsistent. Here, we systematically investigate and compare the influence of H2O on MAPbI3 perovskite films with or without DMF) post-annealing in dark or light condition. The interaction between H2O and the surface of pristine MAPbI3 leads to the fusion of grain boundaries thus grain growth into micron level in short-time moisture exposure. While the penetration of H2O into MAPbI3 results in swelled crystalline whisker, cracking into smaller grains in long-time exposure upon the release of H2O. However, no degradation occurs in dark condition. As the DMF post-annealing treatment changes the surface states of MAPbI3, the interactions between the external H2O and internal MAPbI3 significantly varies from the pristine MAPbI3. Three different surface states with different topographies have influence on the interaction process and mechanism with H2O, leading to different decomposition rates, the striped surface that is the most rough among the three and experiencing the minimum change in surface potential with exposure to 80% humidity decomposes into PbI2 fastest. However, the addition of light will once again affect the aforementioned process. It is found that even ambient light could severely speed up the moisture-induced decomposition of MAPbI3, while the N,N-dimethylformamide (DMF) post-annealing treatment significantly improves the stability of MAPbI3 films upon exposure to humidity and illumination, benefiting from the MAI-deficient thus H2O resistant surface.

7.
Adv Mater ; 30(25): e1707430, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29744940

RESUMO

SiOx is proposed as one of the most promising anodes for Li-ion batteries (LIBs) for its advantageous capacity and stable Li uptake/release electrochemistry, yet its practical application is still a big challenge. Here encapsulation of SiOx nanoparticles into conductive graphene bubble film via a facile and scalable self-assembly in solution is shown. The SiOx nanoparticles are closely wrapped in multilayered graphene to reconstruct a flake-graphite-like macrostructure, which promises uniform and agglomeration-free distribution of SiOx in the carbon while ensures a high mechanical strength and a high tap density of the composite. The composites present unprecedented cycling stability and excellent rate capabilities upon Li storage, rendering an opportunity for its anode use in the next-generation high-energy LIBs.

8.
ACS Appl Mater Interfaces ; 10(36): 30479-30486, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30133250

RESUMO

Red phosphorus is appealing for anode use in sodium-ion batteries. However, the synthesis of electrochemically stable red P anodes remains challenging due to a notable volume variation upon (de)sodiation, and limited synthetic methods arising from the low ignition and sublimation temperatures. To address the above problems, we herein successfully develop an industrially adaptable process for scalable synthesis of affordable phosphorus/carbon (APC) anode materials with an excellent electrochemical performance at a significantly reduced cost. The key to our success is a delicately designed, self-organized, strongly interactive porous P/C structure filled with sodium alginate binder, which maintains the structural integrity of anode and enhances the electrical contact of red P upon its volume variation via a dual protection from porous structure and strong surface interactions. The APC anodes hence present ultrahigh initial Coulombic efficiency (86.2%), excellent cycling stability, and superior rate capability. The industrially adaptable process and excellent electrochemical performance endow the novel APC nano/microspheres with promising applications in high-performance Na-ion batteries.

9.
Chem Commun (Camb) ; 53(89): 12080-12083, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29067376

RESUMO

Herein, a novel SiOx/asphalt membrane was facilely synthesized via demulsification of porous SiOx microspheres. After high temperature pyrolysis, SiOx/carbon composites not only could function as binder-free anodes, but could also exhibit excellent cycling stability and high initial Coulombic efficiency as anodes for practical application.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa