Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 114(2): 110292, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134498

RESUMO

The cetacean hindlimb skeleton massively decreased to only vestigial limb elements as cetaceans evolved from land to aquatic lifestyles; however, the molecular mechanism underlying this major morphological transition remains unclear. In this study, four deletions and specific substitutions were detected in cetacean hindlimb enhancer A (HLEA), an enhancer that can regulate Tbx4 expression in hindlimb tissues to control hindlimb development. Transcriptional activation of HLEA was significantly weaker in bottlenose dolphin than mice, and this was found to be closely associated with cetacean-specific deletions. Furthermore, deletions in cetacean HLEA might disrupt HOX and PITX1 binding sites, which are required for enhancer activation. The ancestral state of these deletions was investigated, and all four specific deletions were found to have occurred after the species diverged from their common ancestor, suggesting that the deletion occurred recently, during a secondary aquatic adaptation. Taking these findings together, we suggest that cetacean-specific sequence changes reduced the Tbx4 gene expression pattern, and consequently drove the gradual loss of hindlimb in cetaceans.


Assuntos
Fatores de Transcrição Box Pareados , Proteínas com Domínio T , Animais , Extremidades , Regulação da Expressão Gênica no Desenvolvimento , Membro Posterior/metabolismo , Camundongos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
2.
BMC Genomics ; 23(1): 797, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460960

RESUMO

BACKGROUND: Cetacean hindlimbs were lost and their forelimb changed into flippers characterized by webbed digits and hyperphalangy, thus allowing them to adapt to a completely aquatic environment. However, the underlying molecular mechanism behind cetacean limb development remains poorly understood. RESULTS: In the present study, we explored the evolution of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with that of other mammals. TBX5, a forelimb specific expression gene, was identified to have been under accelerated evolution in the ancestral branches of cetaceans. In addition, 32 cetacean-specific changes were examined in the SHH signaling network (SHH, PTCH1, TBX5, BMPs and SMO), within which mutations could yield webbed digits or an additional phalange. These findings thus suggest that the SHH signaling network regulates cetacean flipper formation. By contrast, the regulatory activity of the SHH gene enhancer-ZRS in cetaceans-was significantly lower than in mice, which is consistent with the cessation of SHH gene expression in the hindlimb bud during cetacean embryonic development. It was suggested that the decreased SHH activity regulated by enhancer ZRS might be one of the reasons for hindlimb degeneration in cetaceans. Interestingly, a parallel / convergent site (D42G) and a rapidly evolving CNE were identified in marine mammals in FGF10 and GREM1, respectively, and shown to be essential to restrict limb bud size; this is molecular evidence explaining the convergence of flipper-forelimb and shortening or degeneration of hindlimbs in marine mammals. CONCLUSIONS: We did evolutionary analyses of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with those of other mammals to provide novel insights into the molecular basis of flipper forelimb and hindlimb loss in cetaceans.


Assuntos
Membro Anterior , Polidactilia , Feminino , Gravidez , Animais , Camundongos , Membro Posterior , Extremidades , Desenvolvimento Embrionário , Mamíferos
3.
Genomics ; 113(5): 2925-2933, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166750

RESUMO

Cetaceans have evolved elongated soft-tissue flipper with digits made of hyperphalangy. Cetaceans were found to have 2-3 more alanine residues in Hoxd13 than other mammals, which were suggested to be related to their flipper. However, how Hoxd13 regulates other genes and induces hyperphalangy in cetaceans remain poorly understood. Here, we overexpressed the bottlenose dolphin Hoxd13 in zebrafish (Danio rerio). Combined with transcriptome data and evolutionary analyses, our results revealed that the Wingless/Integrated (Wnt) and Hedgehog signaling pathways and multiple genes might regulate hyperphalangy development in cetaceans. Meanwhile, the Notch and mitogen-activated protein kinase (Mapk) signaling pathways and Fibroblast growth factor receptor 1 (Fgfr1) are probably correlated with interdigital tissues retained in the cetacean flipper. In conclusion, this is the first study to use a transgenic zebrafish to explore the molecular evolution of Hoxd13 in cetaceans, and it provides new insights into cetacean flipper formation.


Assuntos
Golfinho Nariz-de-Garrafa , Peixe-Zebra , Animais , Evolução Biológica , Golfinho Nariz-de-Garrafa/genética , Cetáceos/genética , Proteínas Hedgehog/genética , Peixe-Zebra/genética
4.
BMC Genet ; 19(1): 3, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298661

RESUMO

BACKGROUND: The swimming crab Portunus trituberculatus is one of the most commonly farmed crustaceans in China. As one of the most widely known and high-value edible crabs, it crab supports large crab fishery and aquaculture in China. Only large and sexually mature crabs can provide the greatest economic benefits, suggesting the considerable effect of reproductive system development on fishery. Studies are rarely conducted on the molecular regulatory mechanism underlying the development of the reproductive system during the mating embrace stage in this species. In this study, we used high-throughput sequencing to sequence all transcriptomes of the P. trituberculatus reproductive system. RESULTS: Transcriptome sequencing of the reproductive system produced 81,688,878 raw reads (38,801,152 and 42,887,726 reads from female and male crabs, respectively). Low-quality (quality <20) reads were trimmed and removed, leaving only high-quality reads (37,020,664 and 41,021,030 from female and male crabs, respectively). A total of 126,188 (female) and 164,616 (male) transcripts were then generated by de novo transcriptome assembly using Trinity. Functional annotation of the obtained unigenes revealed that a large number of key genes and some important pathways may participate in cell proliferation and signal transduction. On the basis of our transcriptome analyses and as confirmed by quantitative real-time PCR, a number of genes potentially involved in the regulation of gonadal development and reproduction of P. trituberculatus were identified: ADRA1B, BAP1, ARL3, and TRPA1. CONCLUSION: This study is the first to report on the whole reproductive system transcriptome information in stage II of P. trituberculatus gonadal development and provides rich resources for further studies to elucidate the molecular basis of the development of reproductive systems and reproduction in crabs. The current study can be used to further investigate functional genomics in this species.


Assuntos
Braquiúros/genética , Braquiúros/fisiologia , Perfilação da Expressão Gênica , Transcriptoma , Animais , Braquiúros/crescimento & desenvolvimento , Feminino , Masculino , Reprodução , Caracteres Sexuais , Maturidade Sexual
5.
Genes Genomics ; 41(4): 417-429, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30535617

RESUMO

BACKGROUND: The mudflat crab Helice tientsinensis is one of the most commercially valuable species for crabmeat production due to its delicious taste. These crabs are mainly found in coastal wetland where they are seriously threatened by toxic heavy metal pollution. In crustaceans, the hepatopancreas is an important organ for detoxification, and metal toxic substances can be converted to non-toxic or less toxic compounds in this organ. OBJECTIVE: To develop a better understanding of the molecular response of H. tientsinensis to the toxic metal cadmium (Cd) and provide a molecular basis for the toxic metal tolerance of H. tientsinensis. METHODS: In this study, we performed comparative hepatopancreas transcriptome analysis between H. tientsinensis unexposed (as control) and exposed to the toxic metal Cd for 48 h. RESULTS: We identified 1089 Cd stress significantly-upregulated and 1560 Cd stress significantly-downregulated unigenes. Functional categorization and annotation of these differentially-expressed genes (DEGs) demonstrated that the response to Cd stress in the hepatopancreas of H. tientsinensis mainly involves "antioxidant activity", "detoxification", "toxin degradation activity" and "immune system process". In addition, five genes (ABCC1, NDUFAF5, ASTL, DES1, CYP27A) were identified as possible major targets for toxic metal tolerance. CONCLUSION: This is the first time reporting that the response of H. tientsinensis to Cd exposure at the transcriptome level, and it lays the foundation for understanding the molecular mechanisms of the response of H. tientsinensis to environmental toxic metal stress.


Assuntos
Braquiúros/genética , Cádmio/toxicidade , Resistência a Medicamentos/genética , Transcriptoma/efeitos dos fármacos , Animais , Braquiúros/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo
6.
Genes Genomics ; 40(2): 151-165, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29892923

RESUMO

Passeriformes is the largest group within aves and the phylogenetic relationships between Passeriformes have caused major disagreement in ornithology. Particularly, the phylogenetic relationships between muscicapoidea and sylvioidea are complex, and their taxonomic boundaries have not been clearly defined. Our aim was to study the status of two bird species: Tarsiger cyanurus and Phoenicurus auroreus. Furthermore, we analyzed the phylogenetic relationships of Passeriformes. Complete mitochondrial DNA (mtDNA) sequences of both species were determined and the lengths were 16,803 (T. cyanurus) and 16,772 bp (P. auroreus), respectively. Thirteen protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region were identified in these mtDNAs. The contents of A and T at the base compositions was significantly higher than the content of G and C, and this AT skew was positive, while the GC skew was negative. The monophyly of Passeriformes is divided into four major clades: Corvoidea, Sylvioidea, Passeroidea, and Musicicapoidea. Paridae should be separated from the superfamily Sylvioidea and placed within the superfamily Muscicapoidea. The family Muscicapidae and Corvida were paraphyly, while Carduelis and Emberiza were grouped as a sister taxon. The relationships between some species of the order passeriformes may remain difficult to resolve despite an effort to collect additional characters for phylogenetic analysis. Current research of avian phylogeny should focus on adding characters and taxa and use both effectively to obtain a better resolution for deeper and shallow nodes.


Assuntos
Genes Mitocondriais , Genoma Mitocondrial , Passeriformes/genética , Filogenia , Animais , Composição de Bases , Sequência de Bases , Evolução Molecular , Feminino , Rearranjo Gênico , Genômica , Masculino , Passeriformes/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa