RESUMO
As one of the largest transcription factor (TF) families in plants, the NAC (NAM, ATAF1/2, and CUC2) family plays important roles in response pathways to various abiotic and biotic stresses, such as drought, high salinity, low temperature, and pathogen infection. Although, there are a number of reviews on the involvement of NAC TF in plant responses to biotic and abiotic stresses, most of them are focused on the model plants Arabidopsis thaliana and Oryza sativa, and there is a lack of systematic evaluation of specific species. Solanaceae, the world's third most significant cash crop, has been seriously affected by environmental disturbances in recent years in terms of yield and quality, posing a severe threat to global food security. This review focuses on the functional roles of NAC transcription factors in response to external stresses involved in five important Solanaceae crops: tomato, potato, pepper, eggplant and tobacco, and analyzes the affinities between them. It will provide resources for stress-resistant breeding of Solanaceae crops using transgenic technology.
Assuntos
Solanum tuberosum , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Produtos Agrícolas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , SecasRESUMO
Anthocyanins are natural pigments with diverse physiological roles and protective effects, but most tomatoes produce little. In this study, the anthocyanin characteristics, nutritional properties, and postharvest attributes of purple tomato (SlMYB75-OE) obtained by overexpression of SlMYB75 gene were first analyzed. Compared to wild-type (WT), eight monomeric anthocyanins were newly produced by overexpression of SlMYB75, and further study demonstrated the expression of dihydroflavonol-4-reductase (SlDFR) and two UDP-glycosyltransferase (SlUGTs) genes was activated by SlMYB75. The contents of sugars (sucrose, glucose, and fructose) and citric acid content in SlMYB75-OE were higher and lower, respectively, than in WT. In addition, FRAP and DPPH assays indicated SlMYB75-OE had higher antioxidant capacity, when compared to WT. Moreover, SlMYB75-OE exhibited a longer shelf life and stronger resistance to Botrytis cinerea than WT, and this characteristic was positively correlated with anthocyanin content. These results help to clarify the function of SlMYB75 and provide a reference for tomato breeding.