Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chemphyschem ; 21(10): 1070-1078, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32142187

RESUMO

Dispersed negatively charged silica nanoparticles segregate inside microfluidic water-in-oil (W/O) droplets that are coated with a positively charged lipid shell. We report a methodology for the quantitative analysis of this self-assembly process. By using real-time fluorescence microscopy and automated analysis of the recorded images, kinetic data are obtained that characterize the electrostatically-driven self-assembly. We demonstrate that the segregation rates can be controlled by the installment of functional moieties on the nanoparticle's surface, such as nucleic acid and protein molecules. We anticipate that our method enables the quantitative and systematic investigation of the segregation of (bio)functionalized nanoparticles in microfluidic droplets. This could lead to complex supramolecular architectures on the inner surface of micrometer-sized hollow spheres, which might be used, for example, as cell containers for applications in the life sciences.


Assuntos
Ácidos Graxos Monoinsaturados/química , Técnicas Analíticas Microfluídicas , Óleo Mineral/química , Nanopartículas/química , Compostos de Amônio Quaternário/química , Dióxido de Silício/química , Água/química , Aminas/química , Animais , Bovinos , DNA/química , Cinética , Tamanho da Partícula , Soroalbumina Bovina/química , Propriedades de Superfície
2.
Clin Lab ; 66(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32776757

RESUMO

BACKGROUND: The present study focused on the potential clinical significance of Th-17 cell related inflammatory cytokines in the occurrence and development of neonatal respiratory distress syndrome (NRDS). METHODS: We included 82 NRDS children and 82 healthy controls. NRDS children were divided into the mild and severe group based on the disease severity. The serum samples of the NRDS and non-NRDS children were collected, and the expression levels of IL-17, IL-22, and IL-23 were determined by ELISA method. Moreover, correlation between the levels of the cytokines and the disease severity were analyzed, and receiver operating characteristics curve (ROC) analysis was performed to determine the diagnostic value of the cytokines. Finally, correlation between the lung ultrasound score (LUS) of the NRDS patients and the levels of IL-17 and IL-23 were analyzed. RESULTS: IL-17 and IL-23 were dramatically increased in serum of the NRDS patients compared with the non-NRDS patients; moreover, IL-17 and IL-23 were significantly higher in the severe compared with the mild NRDS group, and the levels of both IL-17 and IL-23 were positively correlated with the disease severity. Furthermore, ROC analysis showed that both IL-17 and IL-23 can distinguish NRDS patient, especially the severe NRDS patients from the non-NRDS patients with high sensitivity and specificity; finally, the levels of IL-17 and IL-23 were positively correlated with the LUS in NRDS patients. CONCLUSIONS: IL-17 and IL-23 were up-regulated in NRDS and may serve as sensitive biomarkers for the diagnosis and treatment of the disease.


Assuntos
Interleucina-17 , Síndrome do Desconforto Respiratório do Recém-Nascido , Criança , Humanos , Recém-Nascido , Interleucina-23 , Pulmão , Curva ROC
3.
Small ; 15(20): e1900083, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30985076

RESUMO

The development of methods for colloidal self-assembly on solid surfaces is important for many applications in biomedical sciences. Toward this goal, described is a versatile class of mesoporous silica nanoparticles (MSN) that contain on their surface various types of DNA molecules to enable their self-assembly into micropatterned surface architectures useful for cell studies. Monodisperse dye-doped MSN are synthesized by biphase stratification and functionalized with an aptamer oligonucleotide that serves as gatekeeper for the triggered release of encapsulated molecular cargo, such as fluorescent dye rhodamine B or the anticancer drug doxorubicin. One or two additional types of oligonucleotides are installed on the MSN surface to enable DNA-directed immobilization on solid substrates bearing patterns of complementary capture oligonucleotides. It is demonstrated that this strategy can be used for efficient self-assembly of microstructured surface architectures, which not only promote the adhesion and guidance of cells but also are capable of affecting the fate of adhered cells through triggered release of their cargo. It is believed that this approach is useful for diverse applications in tissue engineering and nanobio sciences.


Assuntos
DNA/química , Nanopartículas/química , Dióxido de Silício/química , Coloides/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Porosidade
4.
RSC Adv ; 14(20): 13944-13945, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38686303

RESUMO

[This corrects the article DOI: 10.1039/D0RA05640E.].

5.
Biomed Pharmacother ; 174: 116540, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579400

RESUMO

Rheumatoid arthritis (RA) is characterized by high level of reactive oxygen species (ROS) and proinflammatory cytokines, which facilitate the activation of the inflammatory signaling such as NF-κB pathway and exacerbate the development of inflammation. Herein, we designed a nanodrug by encapsulating the NO donor S-nitrosoglutathione (GSNO) into an emulsion and coating the surface with a polydopamine (PDA) layer to yield GSNO@PDA, which simultaneously scavenged the extra ROS and suppressed NF-κB signaling for potent RA treatment. To enhance the cellular uptake and NO generation efficiency, dextran sulfate (DS) and Cu2+ were anchored on the surface of GSNO@PDA to obtain the final formulation GSNO@PDA@DS. Our results demonstrated that GSNO@PDA@DS were successfully prepared and the modification of DS effectively boosted the cellular uptake of GSNO@PDA@DS. Moreover, GSNO@PDA@DS lowered cellular ROS and elevated intracellular NO, resulting in a decrease of M1 phenotype, inhibition of NF-κB pathway and down-regulation of proinflammatory cytokine tumor necrosis factor-α (TNF-α). Further in vivo studies confirmed that GSNO@PDA@DS significantly relieved symptoms and bone erosion by regulating the microenvironment of RA, highlighting the potential of GSNO@PDA@DS for RA therapy through ROS scavenging and NO-mediated suppression of inflammatory signaling.


Assuntos
Artrite Reumatoide , NF-kappa B , Doadores de Óxido Nítrico , Polímeros , Espécies Reativas de Oxigênio , S-Nitrosoglutationa , Espécies Reativas de Oxigênio/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Animais , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/administração & dosagem , Camundongos , NF-kappa B/metabolismo , S-Nitrosoglutationa/farmacologia , S-Nitrosoglutationa/administração & dosagem , Células RAW 264.7 , Polímeros/química , Indóis/farmacologia , Indóis/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/administração & dosagem , Sinergismo Farmacológico , Masculino , Transdução de Sinais/efeitos dos fármacos , Sulfato de Dextrana , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Sistemas de Liberação de Medicamentos/métodos
6.
J Control Release ; 355: 273-291, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731800

RESUMO

Inflammatory diseases are usually featured with relatively high level of reactive oxygen species (ROS). The excess ROS facilitate the polarization of microphages into proinflammatory M1 phenotype, and cause DNA damage, protein carbonylation, and lipid peroxidation, resulting in further deterioration of inflammatory diseases. Therefore, alleviating oxidative stress by ROS scavenging has been an effective strategy for reversing inflammation. Inspired by the natural antioxidant enzymes, electron transfer-based artificial antioxidant nanozymes have been emerging therapeutics for the treatment of inflammatory diseases. The present review starts with the basic knowledge of ROS and diseases, followed by summarizing the possible active centers for the preparation of antioxidant nanozymes. The strategies for the design of antioxidant nanozymes on the purpose of higher catalytic activity are provided, and the applications of the developed antioxidant nanozymes on the therapy of inflammatory diseases are discussed. A perspective is included for the design and applications of artificial antioxidant nanozymes in biomedicine as well.


Assuntos
Antioxidantes , Elétrons , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
7.
Int J Pharm ; 632: 122543, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36572263

RESUMO

Tumor necrosis factor receptor-1 (TNFR1) and DEK are closely associated with the development of rheumatoid arthritis (RA). Taking advantage of the high adenosine triphosphate (ATP) in RA microenvironment and the interactions of DNA aptamers with their targets, an ATP-responsive DNA nanodrug was constructed that simultaneously targets TNFR1 and DEK for RA therapy. To this end, DEK target aptamer DTA and TNFR1 target aptamer Apt1-67 were equipped with sticky ends to hybridize with ATP aptamer (AptATP) and fabricated DNA nanodrug DAT. Our results showed that DAT was successfully prepared with good stability. In the presence of ATP, DAT was disassembled, resulting in the release of DTA and Apt1-67. In vitro studies demonstrated that DAT was superior to the non-responsive DNA nanodrug TD-3A3T in terms of anti-inflammation activity and ATP was inevitable to maximize the anti-inflammation ability of DAT. The superior efficacy of DAT is attributed to the more potent inhibition of caspase-3 and NETs formation. In vivo results further confirmed the anti-RA efficacy of DAT, whereas the administration routes (intravenous injection and transdermal administration via microneedles) did not cause significant differences. Overall, the present study supplies an intelligent strategy for RA therapy and explores a promising administration route for future clinical medication of RA patients.


Assuntos
Aptâmeros de Nucleotídeos , Artrite Reumatoide , Nanopartículas , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , DNA , Trifosfato de Adenosina , Nanopartículas/uso terapêutico , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Cromossômicas não Histona , Proteínas Oncogênicas
8.
Se Pu ; 41(9): 789-798, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37712543

RESUMO

Most polycyclic aromatic hydrocarbons (PAHs), which are persistent organic pollutants, have strong carcinogenicity, teratogenicity, and mutagenicity, and pose serious threats to the ecological environment and human health. Owing to the complexity of the matrix and low PAH content of environmental samples, separating and enriching PAHs in environmental samples is necessary prior to their detection. Solid-phase microextraction (SPME) technology is commonly used to detect PAHs owing to its advantages of simple operation, online connection with other instruments, low solvent usage, and integrability of sampling separation, enrichment, and desorption. The extraction coating is the core of this technology, and the type and thickness of the coating are important factors affecting the sensitivity and accuracy of the analysis. Common commercial extraction coatings include polydimethylsiloxane and quartz fiber; however, these materials have a number of disadvantages, such as poor thermal stability and high cost. Several methods, including electrochemical, sol-gel, molecular imprinting, and other coating methods, have been developed to prepare SPME coatings. Electrochemical methods have attracted considerable attention because of their simplicity, short duration, and high coating stability. In the development of an electrochemical method, the selection of the conductive polymer is of particular importance. Polypyrroles (Ppy) are easily synthesized and have numerous advantages, such as good conductivity and stable chemical properties. Thus, their use as a substrate material for SPME coatings is beneficial for improving the overall stability of the coating. Copolymerization with other polymers can enhance the adsorption performance of such coatings via synergistic effects. When doped with inorganic materials with high thermal stability, the composite coating can exhibit high temperature resistance. In this study, a porous boron nitride-doped Ppy-2,3,3-trimethylindole (Ppy/P2,3,3-TMe@In/BN) composite was prepared as a new SPME copolymer coating to detect three PAHs: naphthalene (NAP), acenaphthene (ANY), and fluorene (FLU). Scanning electron microscopy, thermal stability analysis, Fourier transform infrared spectroscopy, and other techniques were used to characterize the Ppy/P2,3,3-TMe@In/BN composite coating. The results showed that the coating featured a large number of porous and wrinkled dendritic structures, which increased the specific surface area of the composite coating and enabled the extensive enrichment of the three PAHs. When the sample inlet temperature of the chromatograph is 320 ℃, the chromatographic baseline of the coating is basically stable. Compared with commercial coatings, the prepared coating had better thermal stability. The coating formed stable intermolecular forces with the three PAHs owing to its numerous carbon-carbon double bonds (C=C), hydrogen bonds, and other structures, thereby achieving excellent enrichment of the target analytes. Compared with Ppy, Ppy/PIn, Ppy/P2,3,3-TMe@In, Ppy/BN, and polydimethylsiloxane (PDMS) coatings, the prepared Ppy/P2,3,3-TMe@In/BN composite coating exhibited better extraction effects for the three PAHs. The Ppy/P2,3,3-TMe@In/BN composite coating was polymerized on the surface of a stainless-steel wire by cyclic voltammetry and combined with gas chromatography-hydrogen flame ionization detection (GC-FID) to optimize the conditions influencing the extraction and separation of the three PAHs, thereby establishing a highly sensitive analytical method for detecting NAP, ANY, and FLU. This method had low limits of detection (LODs) of 10.6-14.5 ng/L (S/N=3) and high stability. The SPME-GC-FID method was used to detect the three PAHs in two environmental water samples, and a small amount of ANY (1.39 µg/L) was detected in one water sample. Satisfactory recoveries (82.5%-113.9%) were obtained when both water samples were spiked with the three PAHs at three levels. The experimental results indicate that the established analytical method can detect the three PAHs in environmental water samples.

9.
Int J Pharm X ; 5: 100162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37396624

RESUMO

Selective suppression of tumor necrosis factor (TNF) α-TNF receptor 1 (TNFR1) signaling is a potent solution for rheumatoid arthritis (RA). Herein, novel composite nucleic acid nanodrugs that simultaneously restrain TNF α binding and TNFR1 multimerization were designed to reinforce inhibition of TNF α-TNFR1 signaling for RA therapy. Towards this end, a novel peptide Pep4-19 that suppresses TNFR1 clustering was extracted from TNFR1. The resulting peptide and a DNA aptamer Apt2-55, which inhibits TNF α binding, were integrally or separately anchored on DNA tetrahedron (TD) to obtain nanodrugs with different spatial distribution of Apt2-55 and Pep4-19 (TD-3A-3P and TD-3(A-P)). Our results showed that Pep4-19 enhanced the viability of inflammatory L929 cells. Both TD-3A-3P and TD-3(A-P) suppressed caspase 3, reduced cell apoptosis, and inhibited FLS-RA migration. Compared to TD-3(A-P), TD-3A-3P supplied sufficient flexibility for Apt2-55 and Pep4-19, and showed better anti-inflammation properties. Furthermore, TD-3A-3P significantly relieved symptoms in collagen-induced arthritis (CIA) mice, and the anti-RA efficacy through intravenous injection was comparable to transdermal administration via microneedles. Overall, the work provides an effective strategy for RA treatment by dual-targeting TNFR1, and demonstrates that microneedles are promising approach to drug administration in the treatment of RA.

10.
Colloids Surf B Biointerfaces ; 219: 112811, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36067683

RESUMO

The abuse of antibiotics has led to the emergence of multidrug-resistant bacterial strains worldwide, which greatly threatens human health. In the present work, we developed single-atom catalysts (SACs) with atomically dispersed Fe as catalytic sites (Fe-SACs) to combat multidrug-resistant bacteria by elevating cellular reactive oxygen species (ROS). Our intensive studies confirmed that Fe-SACs were successfully prepared and exhibited excellent catalase (CAT)-, oxidase (OXD)-, and peroxidase (POD)-like activities. To enhance water dispersibility, biosafety and the interactions between the nanodrugs and gram-positive bacteria, phenylboronic acid group-functionalized carboxylated chitosan (CCS-PBA) was coated on the surface of Fe-SACs to yield Fe-SACs@CCS-PBA for in vitro and in vivo studies. The synergistic catalytic activity and photothermal activity of Fe-SACs@CCS-PBA effectively overcame multidrug-resistant bacterial strains (MRSA) in vitro and significantly accelerated wound healing in vivo, suggesting the great potential of SACs to overcome infectious disease caused by multidrug-resistant bacteria.


Assuntos
Infecções Bacterianas , Quitosana , Humanos , Antibacterianos/farmacologia , Ácidos Carboxílicos , Espécies Reativas de Oxigênio
11.
Pharmaceutics ; 14(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890412

RESUMO

Although the inhibitors of the interleukin-6 receptor (IL-6R) and tumor necrosis factor-α (TNF-α) have achieved a certain success in the clinical treatment of rheumatoid arthritis (RA), great effort should be made to overcome side effects and to improve patient compliance. The present research aimed to address these problems by the co-delivery of tocilizumab (TCZ)-an inhibitor of IL-6R-and an aptamer Apt1-67, which specifically inhibits TNF receptor 1 via separable microneedles (MN). MN were featured with a sustained release of TCZ from needle tips and a rapid release of Apt1-67 from needle bodies by using methacrylate groups grafted hyaluronic acid as the fillings of needle tips and polyvinyl alcohol/polyvinyl pyrrolidone as the fillings of needle bodies. Our results demonstrated that TCZ and Apt1-67 were distributed in MN as expected, and they could be released to the surroundings in the skin. In vivo studies revealed that combined medication via MN (TCZ/Apt1-67@MN) was superior to MN loaded with a single drug. Compared with subcutaneous injection, TCZ/Apt1-67@MN was of great advantage in inhibiting bone erosion and alleviating symptoms of CIA mice. This study not only provides a novel approach for combined medication with different release properties but also supplies a strategy for improving drug efficacy.

12.
ACS Appl Bio Mater ; 5(5): 1990-2008, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35118863

RESUMO

Rheumatoid arthritis (RA) is a common systemic inflammatory autoimmune disease that severely affects the life quality of patients. Current therapeutics in clinic mainly focus on alleviating the development of RA or relieving the pain of patients. The emerging biological disease-modifying antirheumatic drugs (DMARDs) require long-term treatment to achieve the expected efficacy. With the development of bionanotechnology, nucleic acids fulfill characters as therapeutics or nanocarriers and can therefore be alternatives to combat RA. This review summarizes the therapeutic RNAs developed through RNA interference (RNAi), nucleic acid aptamers, DNA nanostructures-based drug delivery systems, and nucleic acid vaccines for the applications in RA therapy and diagnosis. Furthermore, prospects of nucleic acids for RA therapy are intensively discussed as well.


Assuntos
Antirreumáticos , Artrite Reumatoide , Ácidos Nucleicos , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , DNA/uso terapêutico , Humanos , Ácidos Nucleicos/uso terapêutico , Interferência de RNA
13.
Small Methods ; 5(7): e2001049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927983

RESUMO

The development of a DNA-based cell-responsive biohybrid interface that can be used for spatially confined release of molecular cargo is reported. To this end, tailored DNA-protein conjugates are designed as gatekeepers that can be specifically cleaved by matrix metalloproteases (MMPs), which are secreted by many cancer cells. These gatekeepers can be installed by DNA hybridization on the surface of mesoporous silica nanoparticles (MSNs). The MSNs display another orthogonal DNA oligonucleotide that can be exploited for site-selective immobilization on solid glass surfaces to yield micropatterned substrates for cell adhesion. Using the human fibrosarcoma cell line HT1080 that secretes MMPs, it is demonstrated that the biohybrid surface is specifically modified by the cells to release both MSN-bound gatekeeper proteins and the encapsulated cargo peptide KLA. In view of the enormously high modularity of the system presented here, this approach promising for applications in drug delivery, tissue engineering, or other areas of nanobiotechnology is considered.


Assuntos
DNA/química , Nanopartículas/química , Fenômenos Biofísicos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Fibrossarcoma , Humanos , Dióxido de Silício/química
14.
J Control Release ; 340: 292-307, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34748871

RESUMO

Ligands, mostly binding to proteins to form complexes and catalyze chemical reactions, can serve as drug and probe molecules, as well as sensing elements. DNA nanotechnology can integrate the high editability of DNA nanostructures and the biological activity of ligands into functionalized DNA nanostructures in a manner of controlled ligand stoichiometry, type, and arrangement, which provides significant advantages for targeted therapeutics and diagnostics. As therapeutic agents, multiple- and multivalent-ligands functionalized DNA nanostructures increase ligand-receptor affinity and activate multivalent ligand-receptor interactions, enabling improved regulation of cell signaling and enhanced control of cell behavior. As diagnostic agents, multiple ligands interaction via DNA nanostructures endows DNA nanosensors with high sensitivity and excellent signal transduction capability. Herein, we review the principles and advantages of using DNA nanostructures to manipulate ligands for targeted therapeutics and diagnostics and provide future perspectives.


Assuntos
Nanoestruturas , Nanotecnologia , Catálise , DNA , Ligantes
15.
RSC Adv ; 10(64): 38746-38754, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35518403

RESUMO

Antibiotic-resistant bacteria are becoming a serious threat to public health worldwide. To address this problem, we have developed multifunctional peptide (MFP)-coated silver nanoparticles (MFP@AgNPs) for antibacterial studies. MFPs, which can physically adsorb to AgNPs via electrostatic interactions are comprised of a matrix metalloproteinase (MMP) cleavable sequence (PVGLIG), an antimicrobial peptide (tachyplesin-1), and a target peptide (PGP-PEG). The resulting MFP@AgNPs were characterized by various technologies, including UV-vis spectrophotometry, zeta potential analyzer, circular dichroism (CD) spectroscopy, attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR), and transmission electron microscopy (TEM). The MIC and MBC were investigated against both Gram-positive bacteria and Gram-negative bacteria. The antibacterial activity in vivo was evaluated on MDR-AB (multidrug-resistant Acinetobacter baumannii) infected mice. We found that MFP@AgNPs exhibited antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria. Compared to bare AgNPs, MFP@AgNPs-1 killed MDR-AB faster and more efficiently. SEM images showed that MFP@AgNPs-1 induced cell disruption via cell membrane damage. In vivo studies further confirmed the enhanced antibacterial activity against MDR-AB infections. The developed MFP@AgNPs-1 reduced the cytotoxicity of AgNPs and enhanced the antibacterial activity against MDR-AB in vitro and in vivo, providing a possible solution against multidrug-resistant bacterial infections.

16.
Int J Nanomedicine ; 15: 1309-1320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161460

RESUMO

BACKGROUND: Aptamers have been widely used as targeted therapeutic agents due to its relatively small physical size, flexible structure, high specificity, and selectivity. Aptamers functionalized nanomaterials, not only enhance the targeting of nanomaterials, but can also improve the stability of the aptamers. We developed aptamer C2NP (Apt) conjugated straight DNA nanotubes (S-DNT-Apt) and twisted DNA nanotubes (T-DNT-Apt) as nanocarriers for doxorubicin (DOX). METHODS: The twisted DNA nanotubes (T-DNT) and straight DNA nanotubes (S-DNT) were assembled with a scaffold and hundreds of staples. Apt was site-specifically anchored on DNA nanotubes with either different spatial distribution (3 or 6 nm) or varied stoichiometry (15Apt or 30Apt). The developed nanocarriers were characterized with agarose gel electrophoresis and transmission electron microscopy. The drug loading and release in vitro were evaluated by measuring the fluorescence intensity of DOX using a microplate reader. The stability of DNT in cell culture medium plus 10% of FBS was evaluated by agarose gel electrophoresis. The cytotoxicity of DNA nanostructures against K299 cells was tested with a standard CCK8 method. Cellular uptake, cell apoptosis, cell cycle and reactive oxygen species level were investigated by flow cytometry. The expression of p53 was examined by Western Blot. RESULTS: T-DNT-30Apt-6 exhibited the highest cytotoxicity when the concentration of Apt was 120 nM. After intercalation of DOX, the cytotoxicity of DOX@T-DNT-30Apt-6 was further enhanced due to the combination of chemotherapy of DOX and biotherapy of Apt. The enhanced cytotoxicity of DOX@T-DNT-30Apt-6 can be explained by the increase in the cellular uptake, cell apoptosis and intracellular ROS levels. Additionally, the interaction between Apt and its receptor CD30 could upregulate the expression of p53. CONCLUSION: These results demonstrate that both stoichiometry and spatial arrangement of Apt on T-DNT-Apt influence the anticancer activity. The developed twisted DNA nanotubes may be a solution for the synergistic treatment of cancer.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Aptâmeros de Nucleotídeos/farmacologia , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanotubos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Aptâmeros de Nucleotídeos/química , Terapia Biológica , Linhagem Celular Tumoral , DNA/química , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Sinergismo Farmacológico , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
17.
Life Sci ; 258: 118145, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32717270

RESUMO

AIMS: Studies on diabetes mellitus have shown that the phosphoinositide 3-kinase (PI3K)/serine threonine kinase (AKT)/forkhead box protein O1 (FoxO1) signaling pathway can regulate insulin secretion by modulating the expression of pancreatic and duodenal homeobox-1 (PDX-1). Therefore, it was hypothesized that the pathway also played an important role in functional abnormalities of pancreatic islets after severe burns. This study aimed to explore the role and mechanism of the PI3K/AKT/FoxO1/PDX-1 signaling pathway in functional changes of pancreatic islets in rats post severe burns. MAIN METHODS: Rats were grouped, subjected to full thickness burn injuries involving 50% total body surface area (TBSA), and injected intraperitoneally with BPV (HOpic) (0.6 mg/kg) or DMSO (0.55 mg/kg) once a day for three days. Glucose metabolism related indexes were measured by the glucometer, transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA). PI3K/AKT/FoxO1/PDX-1 signaling pathway related indexes were detected through immunofluorescence, western blot and RT-qPCR analyses. KEY FINDINGS: Dysglycemia and impaired insulin secretion occurred in rats, the activity of the PI3K/AKT/FoxO1/PDX-1 signaling pathway in the islets fell, and PDX-1 was translocated from the nucleus to the cytoplasm post severe burns. When BPV (HOpic) was used, glucose metabolism and insulin secretion were improved, the activity of the PI3K/AKT/FoxO1/PDX-1 signaling pathway in the islets was up-regulated, and PDX-1 was redistributed from the cytoplasm to the nucleus. SIGNIFICANCE: The activity of the PI3K/AKT/FoxO1/PDX-1 signaling pathway declined following severe burns. When its activity was up-regulated, insulin secretion could be improved, thus ameliorating hyperglycemia.


Assuntos
Queimaduras/patologia , Proteínas de Homeodomínio/metabolismo , Ilhotas Pancreáticas/patologia , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transativadores/metabolismo , Animais , Queimaduras/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais
18.
Org Lett ; 21(22): 8925-8929, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31675240

RESUMO

A practical and switchable method for the synthesis of aryl sulfones and sulfoxides via sulfide oxidation was developed. The chemoselectivities of products were simply controlled by reaction temperature using O2/air as the terminal oxidant and oxygen source. The broad substrate scope, easy realization of gram-scale production, and the simplification of a sulfide oxidation system render the strategy attractive and valuable.

19.
Biomed Pharmacother ; 111: 657-665, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30611990

RESUMO

A microRNA (miRNA) is a single-stranded, small and non-coding RNA molecule that contains 20-25 nucleotides. More than 2000 miRNAs have been identified in human genes since the first miRNA was discovered in Caenorhabditis elegans in the early 1990s. miRNAs play a crucial role in various biological processes by regulating gene expression through post-transcriptional mechanisms. The alterations of their levels are associated with various diseases, such as glucometabolic disorder and lipid metabolism disorder. In recent years, miRNAs have been proved to be involved in regulating the functions of pancreatic ß-cells, insulin resistance and other biological behaviors related to glucometabolic disorder and the pathogenesis of diabetes mellitus (DM). This review summarized specific miRNAs, including miRNA-375 (miR-375), miRNA-155 (miR-155), miRNA-21 (miR-21), miRNA-33 (miR-33), the let-7 family and some other miRNAs related to glucometabolic regulation, introduced the obstacles and challenges in miRNA therapy, and discussed the prospect of new treatment methods for glucometabolic disorder.


Assuntos
Glucose/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , MicroRNAs/metabolismo , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucose/genética , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Hiperglicemia/metabolismo , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Doenças Metabólicas/genética , MicroRNAs/administração & dosagem , MicroRNAs/genética
20.
RSC Adv ; 8(46): 26300-26308, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541930

RESUMO

Because of the remarkable features, including biocompatibility and biodegradability, DNA origami nanostructures have drawn much attention as ideal carriers for drug delivery. However, the cellular uptake of DNA origami nanostructures was a passive targeting process, resulting in limited therapeutic effect. To address this problem, we anchored the aptamer C2NP (Apt) on rectangular DNA origami nanostructures (RE) to enhance the tumor targeting properties and anticancer effects of doxorubicin (DOX). Apt was anchored onto RE with low or high density (RE-4Apt, RE-16Apt), followed by incubation with DOX to obtain DOX@RE-4Apt and DOX@RE-16Apt. The results showed that DOX@RE-4Apt and DOX@RE-16Apt exhibited excellent biocompatibility and targeting ability, as well as a synergic biological effect with chemotherapy on cancer therapy. More importantly, after conjugation with RE, the bioactivity of Apt was significantly increased. These results revealed that Apt anchored DNA nanostructures not only are potential carriers for precise therapy, but also supply a strategy to enhance the bioactivity of aptamers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa