Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896595

RESUMO

This paper studies the AWC (Active Wafer Centering) algorithm for the movement control and wafer calibration of the handling robot in semiconductor manufacturing to prevent wafer surface contact and contamination during the transfer process. The mechanical and software architecture of the wafer-handling robot is analyzed first, which is followed by a description of the experimental platform for semiconductor manufacturing methods. Secondly, the article utilizes the geometric method to analyze the kinematics of the semiconductor robot, and it decouples the motion control of the robot body from the polar coordinates and joint space. The wafer center position is calibrated using the generalized least-square inverse method for AWC correction. The AWC algorithm is divided into calibration, deviation correction, and retraction detection. These are determined by analyzing the robot's wafer calibration process. In conclusion, the semiconductor robot's motion control and AWC algorithm are verified through experiments for correctness, feasibility, and effectiveness. After the wafer correction, the precision of AWC is <± 0.15 mm, which meets the requirements for transferring robot wafers.

2.
Sensors (Basel) ; 23(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447680

RESUMO

This article proposes a CBAM-ASPP-SqueezeNet model based on the attention mechanism and atrous spatial pyramid pooling (CBAM-ASPP) to solve the problem of robot multi-target grasping detection. Firstly, the paper establishes and expends a multi-target grasping dataset, as well as introduces and uses transfer learning to conduct network pre-training on the single-target dataset and slightly modify the model parameters using the multi-target dataset. Secondly, the SqueezeNet model is optimized and improved using the attention mechanism and atrous spatial pyramid pooling module. The paper introduces the attention mechanism network to weight the transmitted feature map in the channel and spatial dimensions. It uses a variety of parallel operations of atrous convolution with different atrous rates to increase the size of the receptive field and preserve features from different ranges. Finally, the CBAM-ASPP-SqueezeNet algorithm is verified using the self-constructed, multi-target capture dataset. When the paper introduces transfer learning, the various indicators converge after training 20 epochs. In the physical grabbing experiment conducted by Kinova and SIASUN Arm, a network grabbing success rate of 93% was achieved.


Assuntos
Algoritmos , Aprendizagem , Tecnologia , Aprendizado de Máquina
3.
Sensors (Basel) ; 24(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203057

RESUMO

This study introduces a parallel YOLO-GG deep learning network for collaborative robot target recognition and grasping to enhance the efficiency and precision of visual classification and grasping for collaborative robots. First, the paper outlines the target classification and detection task, the grasping system of the robotic arm, and the dataset preprocessing method. The real-time recognition and grasping network can identify a diverse spectrum of unidentified objects and determine the target type and appropriate capture box. Secondly, we propose a parallel YOLO-GG deep vision network based on YOLO and GG-CNN. Thirdly, the YOLOv3 network, pre-trained with the COCO dataset, identifies the object category and position, while the GG-CNN network, trained using the Cornell Grasping dataset, predicts the grasping pose and scale. This study presents the processes for generating a target's grasping frame and recognition type using GG-CNN and YOLO networks, respectively. This completes the investigation of parallel networks for target recognition and grasping in collaborative robots. Finally, the experimental results are evaluated on the self-constructed NEU-COCO dataset for target recognition and positional grasping. The speed of detection has improved by 14.1%, with an accuracy of 94%. This accuracy is 4.0% greater than that of YOLOv3. Experimental proof was obtained through a robot grasping actual objects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa