Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Chem Rev ; 123(24): 13966-14037, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-37991875

RESUMO

Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.


Assuntos
Luminescência , Imagem Óptica , Temperatura
2.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775232

RESUMO

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Assuntos
Encéfalo , Pontos Quânticos , Pontos Quânticos/química , Encéfalo/diagnóstico por imagem , Fótons , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Compostos de Cádmio/química , Sulfetos/química , Camundongos , Compostos de Zinco/química , Telúrio/química , Compostos de Selênio/química , Humanos
3.
Small ; : e2312046, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829034

RESUMO

Accurate construction of artificial nano-chaperones' structure is crucial for precise regulation of protein conformational transformation, facilitating effective treatment of proteopathy. However, how the ligand-anchors of nano-chaperones affect the spatial conformational changes in proteins remains unclear, limiting the development of efficient nano-chaperones. In this study, three types of gold nanoparticles (AuNPs) with different core/ligands interface anchor structures (Au─NH─R, Au─S─R, and Au─C≡C─R, R = benzoic acid) are synthesized as an ideal model to investigate the effect of interfacial anchors on Aß and amylin fibrillization. Computational results revealed that the distinct interfacial anchors imparted diverse distributions of electrostatic potential on the nanointerface and core/ligands bond strength of AuNPs, leading to differential interactions with amyloid peptides. Experimental results demonstrated that all three types of AuNPs exhibit site-specific inhibitory effects on Aß40 fibrillization due to preferential binding. For amylin, amino-anchored AuNPs demonstrate strong adsorption to multiple sites on amylin and effectively inhibit fibrillization. Conversely, thiol- and alkyne-anchored AuNPs adsorb at the head region of amylin, promoting folding and fibrillization. This study not only provided molecular insights into how core/ligands interfacial anchors of nanomaterials induce spatial conformational changes in amyloid peptides but also offered guidance for precisely engineering artificial-chaperones' nanointerfaces to regulate the conformational transformation of proteins.

4.
J Org Chem ; 89(11): 7552-7560, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38805672

RESUMO

Herein, a palladium-catalyzed diastereoselective dearomatization/cross-coupling cyclization reaction between N-arylacyl indoles and (E)-ß-chlorovinyl ketones is reported. Through this cyclization/cycloisomerization cascade, a series of furan-containing indolines were obtained in yields up to 95%. The reaction features readily accessible starting materials, benzyl Pd(II)-catalyzed cycloisomerization of (E)-ß-chlorovinyl ketones, the sequential formation of three bonds and bis-heterocycles, and excellent diastereoselectivity. More importantly, the carbene-secondary benzyl migratory insertion is proven to be a critical process in the sequential cyclizations.

5.
Anal Chem ; 95(29): 10947-10956, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37438258

RESUMO

Three-photon fluorescence microscopy (3PFM) has emerged as a promising tool in monitoring the structures and functions of the brain. Compared to the various imaging technologies, 3PFM enables a deep-penetrating depth attributed to tighter excitation confinement and suppressed photon scattering. However, the shortage of three-photon probes with a large absorption cross section (σ3) substantially limits its uses. Herein, CdSe/CdS/ZnS quantum dots (QDs) with enhanced 3PF performance were synthesized via the band gap engineering strategy. The introduction of a CdS interlayer with optimized thickness between the emitting CdSe core and the ZnS shell significantly enhanced the 3P absorption cross section of QDs, which originated from the intrinsic piezoelectric polarization effect and the change of the core/shell structure from type-I to quasi-type-II. In addition, the outer ZnS layer compensated the poor electronic passivation of CdS, providing a high level of passivation for the improvement of quantum yield as well as the 3P action cross section of QDs. Under the excitation of a 1600 nm femtosecond laser, PEGylated CdSe/CdS/ZnS QDs were used for in vivo 3PFM imaging of cerebral vessels with high resolution. A tiny capillary with a diameter of 0.8 µm could be resolved at the imaging depth of 1550 µm in a mouse brain with an opened skull. A penetration depth of 850 µm beneath the skull was also achieved using a mouse model with an intact skull.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Luminescência , Encéfalo , Neuroimagem
6.
Langmuir ; 39(28): 9850-9856, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37413975

RESUMO

DNA has been demonstrated as a powerful platform for the construction of inorganic nanoparticles (NPs) into complex three-dimensional assemblies. Despite extensive research, the physical fundamental details of DNA nanostructures and their assemblies with NPs remain obscure. Here, we report the identification and quantification of the assembly details of programmable DNA nanotubes with monodisperse circumferences of a 4, 5, 6, 7, 8, or 10 DNA helix and their pearl-necklace-like assemblies with ultrasmall gold nanoparticles, Au25 nanoclusters (AuNCs), liganded by -S(CH2)nNH3+ (n = 3, 6, 11). The flexibilities of DNA nanotubes, analyzed via statistical polymer physics analysis through atomic force microscopy (AFM), demonstrate that ∼2.8 power exponentially increased with the DNA helix number. Moreover, the short-length liganded AuS(CH2)3NH3+ NCs were observed to be able to form pearl-necklace-like DNA-AuNC assemblies stiffened than neat DNA nanotubes, while long-length liganded AuS(CH2)6NH3+ and AuS(CH2)11NH3+ NCs could fragment DNA nanotubular structures, indicating that DNA-AuNC assembling can be precisely manipulated by customizing the hydrophobic domains of the AuNC nanointerfaces. We prove the advantages of polymer science concepts in unraveling useful intrinsic information on physical fundamental details of DNA-AuNC assembling, which facilitates DNA-metal nanocomposite construction.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Polímeros
7.
Cell Biol Toxicol ; 39(1): 53-83, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125599

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs which are essential post-transcriptional gene regulators in various neuronal degenerative diseases and playact a key role in these physiological progresses. Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and, stroke, are seriously threats to the life and health of all human health and life kind. Recently, various studies have reported that some various miRNAs can regulate the development of neurodegenerative diseases as well as act as biomarkers to predict these neuronal diseases conditions. Endogenic miRNAs such as miR-9, the miR-29 family, miR-15, and the miR-34 family are generally dysregulated in animal and cell models. They are involved in regulating the physiological and biochemical processes in the nervous system by targeting regulating different molecular targets and influencing a variety of pathways. Additionally, exogenous miRNAs derived from homologous plants and defined as botanmin, such as miR2911 and miR168, can be taken up and transferred by other species to be and then act analogously to endogenic miRNAs to regulate the physiological and biochemical processes. This review summarizes the mechanism and principle of miRNAs in the treatment of some neurodegenerative diseases, as well as discusses several types of miRNAs which were the most commonly reported in diseases. These miRNAs could serve as a study provided some potential biomarkers in neurodegenerative diseases might be an ideal and/or therapeutic targets for neurodegenerative diseases. Finally, the role accounted of the prospective exogenous miRNAs involved in mammalian diseases is described. 1. Listing a large number of neural-related miRNAs and sorting out their pathways. 2. Classify and sort miRNAs according to their mechanism of action. 3. Demonstrating the effects of up-regulation or down-regulation of each miRNAs on the nervous system.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Estudos Prospectivos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , Biomarcadores , Mamíferos/genética , Mamíferos/metabolismo
8.
Nano Lett ; 22(7): 2964-2970, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297644

RESUMO

Synthetic nanomaterials possessing biomolecular-chaperone functions are good candidates for modulating physicochemical interactions in many bioapplications. Despite extensive research, no general principle to engineer nanomaterial surfaces is available to precisely manipulate biomolecular conformations and behaviors, greatly limiting attempts to develop high-performance nanochaperone materials. Here, we demonstrate that, by quantifying the length (-SCxR±, x = 3-11) and charges (R- = -COO-, R+ = -NH3+) of ligands on Au25 gold nanochaperones (AuNCs), simulating binding sites and affinities of amyloid-like peptides with AuNCs, and probing peptide folding and fibrillation in the presence of AuNCs, it is possible to precisely manipulate the peptides' conformations and, thus, their amyloidosis via customizing AuNCs nanointerfaces. We show that intermediate-length liganded AuNCs with a specific charge chaperone peptides' native conformations and thus inhibit their fibrillation, while other types of AuNCs destabilize peptides and promote their fibrillation. We offer a microscopic molecular insight into peptide identity on AuNCs and provide a guideline in customizing nanochaperones via manipulating their nanointerfaces.


Assuntos
Amiloidose , Nanopartículas Metálicas , Amiloide/metabolismo , Ouro/química , Humanos , Ligantes , Nanopartículas Metálicas/química , Chaperonas Moleculares/química , Peptídeos
9.
Nano Lett ; 22(10): 3983-3992, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35548949

RESUMO

Lysosome-targeting self-assembling prodrugs had emerged as an attractive approach to overcome the acquisition of resistance to chemotherapeutics by inhibiting lysosomal sequestration. Taking advantage of lysosomal acidification induced intracellular hydrolytic condensation, we developed a lysosomal-targeting self-condensation prodrug-nanoplatform (LTSPN) system for overcoming lysosome-mediated drug resistance. Briefly, the designed hydroxycamptothecine (HCPT)-silane conjugates self-assembled into silane-based nanoparticles, which were taken up into lysosomes by tumor cells. Subsequently, the integrity of the lysosomal membrane was destructed because of the acid-triggered release of alcohol, wherein the nanoparticles self-condensed into silicon particles outside the lysosome through intracellular hydrolytic condensation. Significantly, the LTSPN system reduced the half-maximal inhibitory concentration (IC50) of HCPT by approximately 4 times. Furthermore, the LTSPN system realized improved control of large established tumors and reduced regrowth of residual tumors in several drug-resistant tumor models. Our findings suggested that target destructing the integrity of the lysosomal membrane may improve the therapeutic effects of chemotherapeutics, providing a potent treatment strategy for malignancies.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Linhagem Celular Tumoral , Resistência a Medicamentos , Humanos , Lisossomos/patologia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Silanos/farmacologia , Silanos/uso terapêutico
10.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163442

RESUMO

Pannexins (PANX) were cloned based on their sequence homology to innexins (Inx), invertebrate gap junction proteins. Although there is no sequence homology between PANX and connexins (Cx), these proteins exhibit similar configurations. The PANX family has three members, PANX1, PANX2 and PANX3. Among them, PANX1 has been the most extensively studied. The PANX1 channels are activated by many factors, including high extracellular K+ ([K+]e), high intracellular Ca2+ ([Ca2+]i), Src family kinase (SFK)-mediated phosphorylation, caspase cleavage and mechanical stimuli. However, the mechanisms mediating this mechanosensitivity of PANX1 remain unknown. Both force-from-lipids and force-from-filaments models are proposed to explain the gating mechanisms of PANX1 channel mechanosensitivity. Finally, both the physiological and pathological roles of mechanosensitive PANX1 are discussed.


Assuntos
Conexinas/metabolismo , Glaucoma/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Humanos , Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular , Fosforilação
11.
Anal Chem ; 92(9): 6269-6277, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32233396

RESUMO

Aberrant protein phosphorylation and glycosylation are closely associated with a number of diseases. In particular, an interplay between phosphorylation and glycosylation regulates the hyperphosphorylation of protein tau, which is regarded as one of the pathologic features of Alzheimer's disease (AD). However, simultaneous characterization of these two types of post-translational modifications (PTMs) in the complex biological samples is challenging. TiO2 and the immobilized ion affinity chromatography (IMAC)-based enrichment method suffers from low selectivity and/or low recovery of phosphopeptides and glycopeptides because of the inherent limitations in intermolecular interactions. Here, we introduce a hydrogen bond-based poly[(N-isopropylacrylamide-co-4-(3-acryloylthioureido)benzoic acid0.2] (referred to as PNI-co-ATBA0.2) as a bifunctional enrichment platform to solve this bottleneck problem. Benefited from multiple hydrogen bonding interactions of ATBA with N-acetylneuraminic acid (Neu5Ac) located at the terminals of sialylated glycans and from favorable conformational transition of the copolymer chains, the smart copolymer has high adsorption capacity (370 mg·g-1) and high recovery (ranging from 74.1% ± 7.0% to 106% ± 5.0% (n = 3)) of sialylated glycopeptides. The smart copolymer also has high selectivity (79%) for simultaneous enrichment of glycopeptides and phosphopeptides from 50 µg HeLa cell lysates, yielding 721 unique phosphorylation sites from 631 phosphopeptides and 125 unique glycosylation sites from 120 glycopeptides. This study will open a new avenue and provide a novel insight for the design of enrichment materials used in PTM-proteomics.


Assuntos
Glicopeptídeos/análise , Fosfopeptídeos/análise , Polímeros/química , Proteômica/métodos , Cromatografia de Afinidade , Glicosilação , Células HeLa , Humanos , Ligação de Hidrogênio , Espectrometria de Massas , Ácido N-Acetilneuramínico/química , Fosforilação , Dióxido de Silício/química , Titânio/química
12.
Molecules ; 25(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233619

RESUMO

The sigma receptors were classified into sigma-1 and sigma-2 receptor based on their different pharmacological profiles. In the past two decades, our understanding of the biological and pharmacological properties of the sigma-1 receptor is increasing; however, little is known about the sigma-2 receptor. Recently, the molecular identity of the sigma-2 receptor has been identified as TMEM97. Although more and more evidence has showed that sigma-2 ligands have the ability to treat cancer and Alzheimer's disease (AD), the mechanisms connecting these two diseases are unknown. Data obtained over the past few years from human and animal models indicate that cholesterol homeostasis is altered in AD and cancer, underscoring the importance of cholesterol homeostasis in AD and cancer. In this review, based on accumulated evidence, we proposed that the beneficial roles of sigma-2 ligands in cancer and AD might be mediated by their regulation of cholesterol homeostasis.


Assuntos
Doença de Alzheimer/metabolismo , Biomarcadores , Colesterol/metabolismo , Homeostase , Neoplasias/metabolismo , Receptores sigma/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Vias Biossintéticas , Descoberta de Drogas , Humanos , Ligantes , Metabolismo dos Lipídeos/efeitos dos fármacos , Estrutura Molecular , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Receptores sigma/antagonistas & inibidores , Receptores sigma/química , Relação Estrutura-Atividade
13.
Sci Technol Adv Mater ; 20(1): 858-869, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497179

RESUMO

Separation of phosphoproteins is essential for understanding their vital roles in biological processes and pathology. Transition metal-based receptors and antibodies, the routinely used materials for phosphoproteins enrichment, both suffer from low sensitivity, low recovery and coverage. In this work, a novel smart copolymer material was synthesized by modifying porous silica gel with a poly[(N-isopropylacrylamide-co-4-(3-acryloylthioureido) benzoic acid)0.35] (denoted as NIPAAm-co-ATBA0.35@SiO2). Driven by the hydrogen bonds complexation of ATBA monomers with phosphate groups, the copolymer-modified surface exhibited a remarkable adsorption toward native α-casein (a model phosphoprotein), accompanied with significant changes in surface viscoelasticity and roughness. Moreover, this adsorption was tunable and critically dependent on the polarity of carrier solvent. Benefiting from these features, selective enrichment of phosphoprotein was obtained using NIPAAm-co-ATBA0.35@SiO2 under a dispersive solid-phase extraction (dSPE) mode. This result displays a good potential of smart polymeric materials in phosphoprotein enrichment, which may facilitate top-down phosphoproteomics studies.

14.
Rapid Commun Mass Spectrom ; 32(16): 1353-1362, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29873418

RESUMO

RATIONALE: Accurate characterization of glycopeptides without a prior glycan cleavage could provide valuable information on site-specific glycosylation, which is critical to reveal the biological functions of protein glycosylation. However, due to the distinct nature of oligosaccharides and ploypeptides, it is usually difficult to effectively fragment glycopeptides in mass spectrometry analysis. METHODS: Here we applied a stepped normalized collisional energy (NCE) approach, which is able to combine fragment ions from three different collision energies, in a hybrid quadrupole orbitrap (Q Exactive Plus) to characterize glycopeptides. A systematic evaluation was firstly performed to find optimal NCE values for the fragmentation of glycan chains and peptide backbones from glycopeptides. Guided by the results of the systematic evaluation, the stepped NCE method was optimized and employed to analyze glycopeptides enriched from human serum. RESULTS: The stepped NCE approach was found to effectively fragment both the glycan chains and peptide backbones from glycopeptides and record these fragments in a single MS/MS spectrum. In comparison with the regular HCD methods, the stepped NCE method identified more glycopeptides with higher scores from human serum samples. CONCLUSIONS: Our studies demonstrate the capability of stepped NCE for the effective characterization of glycopeptides on a large scale.


Assuntos
Glicopeptídeos/análise , Glicopeptídeos/química , Espectrometria de Massas em Tandem/métodos , Glicopeptídeos/metabolismo , Glicosilação , Humanos , Íons/análise , Íons/química , Íons/metabolismo , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Análise de Sequência de Proteína , Tripsina/metabolismo
15.
Phys Chem Chem Phys ; 20(22): 15445-15454, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29796548

RESUMO

In this study, we present a trajectory surface hopping (TSH) method that incorporates spin-orbit (SO) effects using the "diagonal representation" within the Linear-Response Time-Dependent Density Functional Theory (LR-TDDFT) framework. In this approach, the evaluation of spin-orbit coupling (SOC) matrix elements between singlet and triplet states employs the Casida's wave functions and the Breit-Pauli (BP) spin-orbit Hamiltonian with effective charge approximation. The new TSH approach is then used to investigate the excited-state relaxation of 2-thiouracil (2TU) in vacuum and water. On the basis of the simulation results, relaxation of the initially populated bright state is found to be dominated by the route S2 → S1 → T. The intersystem crossing (ISC) can occur at either the C2-puckered structure or the C2-pyramidalized S1 minimum, and is promoted by a three-state near-degeneracy (S1/T2/T1 in vacuum or S1/T3/T2 in water) as well as sizable SOCs. Our simulations achieve a good agreement with the available experimental measurements in terms of the internal conversion (IC) and ISC time scales, and complement the picture of the relaxation mechanisms of 2TU after photo-excitation to the first bright state.


Assuntos
Tiouracila/química , Algoritmos , Cinética , Modelos Químicos , Estrutura Molecular , Teoria Quântica , Tempo de Reação , Solventes/química , Propriedades de Superfície , Água/química
16.
Small ; 13(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008568

RESUMO

Surface wettability plays a key role in addressing issues ranging from basic life activities to our daily life, and thus being able to control it is an attractive goal. Learning from nature, both of its structure and function, brings us much inspiration in designing smart polymers to tackle this major challenge. Life functions particularly depend on biomolecular recognition-induced interfacial properties from the aqueous phase onto either "soft" cell and tissue or "hard" inorganic bone and tooth surfaces. The driving force is noncovalent weak interactions rather than strong covalent combinations. An overview is provided of the weak interactions that perform vital actions in mediating biological processes, which serve as a basis for elaborating multi-component polymers with special wettabilities. The role of smart polymers from molecular recognitions to macroscopic properties are highlighted. The rationale is that highly selective weak interactions are capable of creating a dynamic synergetic communication in the building components of polymers. Biomolecules could selectively induce conformational transitions of polymer chains, and then drive a switching of physicochemical properties, e.g., roughness, stiffness and compositions, which are an integrated embodiment of macroscopic surface wettabilities.


Assuntos
Polímeros/química , Animais , Materiais Biomiméticos/química , Humanos , Dióxido de Silício/química , Molhabilidade
17.
Analyst ; 142(19): 3564-3568, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28872647

RESUMO

A series of dipeptide-based fluorescent sensors were developed that exhibit sensitive and distinct responses to six typical sialic acid (SA) species despite the interference of 300-fold d-glucose or other saccharides, thus contributing to a novel fluorescence sensing matrix allowing the rapid and high-efficiency discrimination of different SA species.

18.
Small ; 11(9-10): 1097-112, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25354445

RESUMO

The transformation of recognition signals into regulating macroscopic behaviors of biological entities (e.g., biomolecules and cells) is an extraordinarily challenging task in engineering interfacial properties of artificial materials. Recently, there has been extensive research for dynamic biointerfaces driven by biomimetic techniques. Weak interactions and chirality are two crucial routes that nature uses to achieve its functions, including protein folding, the DNA double helix, phospholipid membranes, photosystems, and shell and tooth growths. Learning from nature inspires us to design dynamic biointerfaces, which usually take advantage of highly selective weak interactions (e.g., synergetic chiral H-bonding interactions) to tailor their molecular assemblies on external stimuli. Biomolecules can induce the conformational transitions of dynamic biointerfaces, then drive a switching of surface characteristics (topographic structure, wettability, etc.), and eventually achieve macroscopic functions. The emerging progresses of dynamic biointerfaces are reviewed and its role from molecular recognitions to biological functions highlighted. Finally, a discussion is presented of the integration of dynamic biointerfaces with the basic biochemical processes, possibly solving the big challenges in life science.


Assuntos
Biomimética , Polímeros/química , Resinas Acrílicas/química , Animais , Catálise , Adesão Celular , Humanos , Ligação de Hidrogênio , Conformação Molecular , Fosfolipídeos , Estereoisomerismo , Propriedades de Superfície , Molhabilidade
19.
Angew Chem Int Ed Engl ; 54(7): 2245-50, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25533756

RESUMO

Molecular chirality is introduced at liquid-solid interfaces. A ring-like aggregation of amyloid Aß(1-40) on N-isobutyryl-L-cysteine (L-NIBC)-modified gold substrate occurs at low Aß(1-40) concentration, while D-NIBC modification only results in rod-like aggregation. Utilizing atomic force microscope controlled tip-enhanced Raman scattering, we directly observe the secondary structure information for Aß(1-40) assembly in situ at the nanoscale. D- or L-NIBC on the surface can guide parallel or nonparallel alignment of ß-hairpins through a two-step process based on electrostatic-interaction-enhanced adsorption and subsequent stereoselective recognition. Possible electrostatic interaction sites (R5 and K16) and a chiral recognition site (H14) of Aß(1-40) are proposed, which may provide insight into the understanding of this effect.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Agregados Proteicos , Peptídeos beta-Amiloides/ultraestrutura , Cisteína/análogos & derivados , Cisteína/química , Ouro/química , Humanos , Microscopia de Força Atômica , Fragmentos de Peptídeos/ultraestrutura , Estrutura Secundária de Proteína , Eletricidade Estática , Estereoisomerismo , Propriedades de Superfície
20.
J Am Chem Soc ; 136(30): 10736-42, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25011035

RESUMO

Protein misfolding to form amyloid aggregates is the main cause of neurodegenerative diseases. While it has been widely acknowledged that amyloid formation in vivo is highly associated with molecular surfaces, particularly biological membranes, how their intrinsic features, for example, chirality, influence this process still remains unclear. Here we use cysteine enantiomer modified graphene oxide (GO) as a model to show that surface chirality strongly influences this process. We report that R-cysteine modification suppresses the adsorption, nucleation, and fiber elongation processes of Aß(1-40) and thus largely inhibits amyloid fibril formation on the surface, while S-modification promotes these processes. And surface chirality also greatly influences the conformational transition of Aß(1-40) from α-helix to ß-sheet. More interestingly, we find that this effect is highly related to the distance between chiral moieties and GO surface, and inserting a spacer group of about 1-2 nm between them prevents the adsorption of Aß(1-40) oligomers, which eliminates the chiral effect. Detailed study stresses the crucial roles of GO surface. It brings novel insights for better understanding the amyloidosis process on surface from a biomimetic perspective.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Cisteína/análogos & derivados , Grafite/química , Óxidos/química , Fragmentos de Peptídeos/química , Adsorção , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa