Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Med Sci ; 43(4): 668-678, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480413

RESUMO

OBJECTIVE: The main characteristics of diabetic nephropathy (DN) at the early stage are abnormal angiogenesis of glomerular endothelial cells (GECs) and macrophage infiltration. Galectin-3 plays a pivotal role in the pathogenesis of DN via binding with its ligand, advanced glycation end products (AGEs). Catalpol, an iridoid glucoside extracted from Rehmannia glutinosa, has been found to ameliorate vascular inflammation, reduce endothelial permeability, and protect against endothelial damage in diabetic milieu. However, little is known about whether catalpol could exert an anti-angiogenesis and anti-inflammation effect induced by AGEs. METHODS: Mouse GECs (mGECs) and RAW 264.7 macrophages were treated with different concentrations of AGEs (0, 50, 100, 200 and 400 µg/mL) for different time (0, 6, 12, 24 and 48 h) to determine the optimal concentration of AGEs and treatment time. Cells were treated with catalpol (10 µmol/L), GB1107 (1 µmol/L, galectin-3 inhibitor), PX-478 (50 µmol/L, HIF-1α inhibitor), adenovirus-green fluorescent protein (Ad-GFP) [3×107 plaque-forming unit (PFU)/mL] or Ad-galectin-3-GFP (2×108 PFU/mL), which was followed by incubation with 50 µg/mL AGEs. The levels of galectin-3, vascular endothelial growth factor A (VEGFA) and pro-angiogenic factors angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), tunica interna endothelial cell kinase-2 (Tie-2) were detected by enzymelinked immunosorbent assay (ELISA). Cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation of these cells. The expression levels of galectin-3, vascular endothelial growth factor receptor 1 (VEGFR1), VEGFR2, and hypoxia-inducible factor-1α (HIF-1α) in mGECs and those of galectin-3 and HIF-1α in RAW 264.7 macrophages were detected by Western blotting and immunofluorescence (IF) staining. The rat DN model was established. Catalpol (100 mg/kg) or GB1107 (10 mg/kg) was administered intragastrically once a day for 12 weeks. Ad-galectin-3-GFP (6×107 PFU/mL, 0.5 mL) or Ad-GFP (6×106 PFU/mL, 0.5 mL) was injected into the tail vein of rats 48 h before the sacrifice of the animals. The expression of galectin-3, VEGFR1, VEGFR2, and HIF-1α in renal cortices was analyzed by Western blotting. The expression of galectin-3, F4/80 (a macrophage biomarker), and CD34 (an endothelium biomarker) in renal cortices was detected by IF staining, and collagen accumulation by Masson staining. RESULTS: The expression levels of galectin-3 and VEGFA were significantly higher in mGECs and RAW 264.7 macrophages treated with 50 µg/mL AGEs for 48 h than those in untreated cells. Catalpol and GB1107 could block the AGEs-induced proliferation of mGECs and RAW 264.7 macrophages. Over-expression of galectin-3 was found to reduce the inhibitory effect of catalpol on the proliferation of cells. Catalpol could significantly decrease the levels of Ang-1, Ang-2 and Tie-2 released by AGEs-treated mGECs, which could be reversed by over-expression of galectin-3. Catalpol could significantly inhibit AGEs-induced expression of galectin-3, HIF-1α, VEGFR1, and VEGFR2 in mGECs. The inhibitory effect of catalpol on galectin-3 in AGEs-treated mGECs was impaired by PX-478. Moreover, catalpol attenuated the AGEs-activated HIF-1α/galectin-3 pathway in RAW 264.7 macrophages, which was weakened by PX-478. Additionally, catalpol significantly inhibited the expression of galectin-3, macrophage infiltration, collagen accumulation, and angiogenesis in the kidney of diabetic rats. Over-expression of galectin-3 could antagonize these inhibitory effects of catalpol. CONCLUSION: Catalpol prevented the angiogenesis of mGECs and macrophage proliferation via inhibiting galectin-3. It could prevent the progression of diabetes-induced renal damage.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Camundongos , Ratos , Galectina 3/genética , Fator A de Crescimento do Endotélio Vascular/genética , Glucosídeos Iridoides/farmacologia , Células Endoteliais , Produtos Finais de Glicação Avançada
2.
Eur J Pharmacol ; 740: 522-31, 2014 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24975100

RESUMO

Free radical production contributes to the early ischemic response and the neuroinflammatory response to injury initiates the second wave of cell death following ischemic stroke. Edaravone is a free radical scavenger, and borneol has shown anti-inflammatory effect. We investigated the synergistic effect of these two drugs in the rat model of transient cerebral ischemia. Edaravone scavenged OH, NO and ONOO─ concentration-dependently, and borneol inhibited ischemia/reperfusion-induced tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß) and cyclooxygenase-2 (COX-2) expressions. In the rat model of transient cerebral ischemia and reperfusion, the combination of edaravone and borneol significantly ameliorated ischemic damage with an optimal proportion of 4:1. Emax (% inhibition) of edaravone, borneol and two drugs in combination was 55.7%, 65.8% and 74.3% respectively. ED50 of edaravone and borneol was 7.17 and 0.36 mg/kg respectively. When two drugs in combination, ED50 was 0.484 mg/kg, in which edaravone was 0.387 mg/kg (ineffective dose) and borneol was 0.097 mg/kg (ineffective dose). Combination index (CI)<1 among effects observed in experiments, suggesting a significant synergistic effect. Reduced levels of pro-inflammatory mediators and free radicals were probably associated with the synergistic effect of edaravone and borneol. The combination exhibited a therapeutic time window of 6h in ischemia/reperfusion model, and significantly ameliorated damages in permanent ischemia model. Moreover, two drugs in combination promoted long-term effect, including improved elemental vital signs, sensorimotor functions and spatial cognition. Our results suggest that the combination of edaravone and borneol have a synergistic effect for treating ischemic stroke.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antipirina/análogos & derivados , Isquemia Encefálica/tratamento farmacológico , Canfanos/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antipirina/farmacologia , Antipirina/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Canfanos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Edaravone , Sequestradores de Radicais Livres/farmacologia , Interleucina-1beta/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Neuroglia , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa