Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Biol Chem ; 287(35): 29312-23, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22773843

RESUMO

Wnts are essential for a wide range of developmental processes, including cell growth, division, and differentiation. Some of these processes signal via the planar cell polarity (PCP) pathway, which is a ß-catenin-independent Wnt signaling pathway. Previous studies have shown that Ryk, a member of the receptor tyrosine kinase family, can bind to Wnts. Ryk is required for normal axon guidance and neuronal differentiation during development. Here, we demonstrate that mammalian Ryk interacts with the Wnt/PCP pathway. In vitro analysis showed that the Wnt inhibitory factor domain of Ryk was necessary for Wnt binding. Detailed analysis of two vertebrate model organisms showed Ryk phenotypes consistent with PCP signaling. In zebrafish, gene knockdown using morpholinos revealed a genetic interaction between Ryk and Wnt11 during the PCP pathway-regulated process of embryo convergent extension. Ryk-deficient mouse embryos displayed disrupted polarity of stereociliary hair cells in the cochlea, a characteristic of disturbed PCP signaling. This PCP defect was also observed in mouse embryos that were double heterozygotes for Ryk and Looptail (containing a mutation in the core Wnt/PCP pathway gene Vangl2) but not in either of the single heterozygotes, suggesting a genetic interaction between Ryk and Vangl2. Co-immunoprecipitation studies demonstrated that RYK and VANGL2 proteins form a complex, whereas RYK also activated RhoA, a downstream effector of PCP signaling. Overall, our data suggest an important role for Ryk in Wnt/planar cell polarity signaling during vertebrate development via the Vangl2 signaling pathway, as demonstrated in the mouse cochlea.


Assuntos
Polaridade Celular/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Células CHO , Cóclea/citologia , Cóclea/embriologia , Cricetinae , Cricetulus , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células HEK293 , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Proteína Tirosina Quinases/genética , Proteínas Wnt/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Commun Biol ; 3(1): 5, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31925335

RESUMO

The glycocalyx is a highly hydrated, glycoprotein-rich coat shrouding many eukaryotic and prokaryotic cells. The intestinal epithelial glycocalyx, comprising glycosylated transmembrane mucins, is part of the primary host-microbe interface and is essential for nutrient absorption. Its disruption has been implicated in numerous gastrointestinal diseases. Yet, due to challenges in preserving and visualizing its native organization, glycocalyx structure-function relationships remain unclear. Here, we characterize the nanoarchitecture of the murine enteric glycocalyx using freeze-etching and electron tomography. Micrometer-long mucin filaments emerge from microvillar-tips and, through zigzagged lateral interactions form a three-dimensional columnar network with a 30 nm mesh. Filament-termini converge into globular structures ~30 nm apart that are liquid-crystalline packed within a single plane. Finally, we assess glycocalyx deformability and porosity using intravital microscopy. We argue that the columnar network architecture and the liquid-crystalline packing of the filament termini allow the glycocalyx to function as a deformable size-exclusion filter of luminal contents.


Assuntos
Tomografia com Microscopia Eletrônica , Glicocálix/química , Glicocálix/ultraestrutura , Microscopia Intravital , Animais , Dextranos/química , Tomografia com Microscopia Eletrônica/métodos , Imunofluorescência , Microscopia Intravital/métodos , Camundongos , Microvilosidades/ultraestrutura , Porosidade
4.
Front Cell Neurosci ; 12: 211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079013

RESUMO

Outer hair cells (OHC) act as amplifiers and their function is modified by medial olivocochlear (MOC) efferents. The unique OHC motor protein, prestin, provides the molecular basis for somatic electromotility, which is required for sensitivity and frequency selectivity, the hallmarks of mammalian hearing. Prestin proteins are the major component of the lateral membrane of mature OHCs, which separates apical and basal domains. To investigate the contribution of prestin to this unique arrangement, we compared the distribution of membrane proteins in OHCs of wildtype (WT) and prestin-knockout (KO) mice. In WT, the apical protein PMCA2 was exclusively localized to the hair bundles, while it was also found at the lateral membrane in KOs. Similarly, a basal protein KCNQ4 did not coalesce at the base of OHCs but was widely dispersed in mice lacking prestin. Since the expression levels of PMCA2 and KCNQ4 remained unchanged in KOs, the data indicate that prestin is required for the normal distribution of apical and basal membrane proteins in OHCs. Since OHC synapses predominate in the basal subnuclear region, we also examined the synaptic architecture in prestin-KO mice. Although neurite densities were not affected, MOC efferent terminals in prestin-KO mice were no longer constrained to the basal pole as in WT. This trend was evident as early as at postnatal day 12. Furthermore, terminals were often enlarged and frequently appeared as singlets when compared to the multiple clusters of individual terminals in WT. This abnormality in MOC synaptic morphology in prestin-KO mice is similar to defects in mice lacking MOC pathway proteins such as α9/α10 nicotinic acetylcholine receptors and BK channels, indicating a role for prestin in the proper establishment of MOC synapses. To investigate the contribution of prestin's electromotility, we also examined OHCs from a mouse model that expresses non-functional prestin (499-prestin). We found no changes in PMCA2 localization and MOC synaptic morphology in OHCs from 499-prestin mice. Taken together, these results indicate that prestin, independent of its motile function, plays an important structural role in membrane compartmentalization, which is required for the formation of normal efferent-OHC synapses in mature OHCs.

5.
Elife ; 72018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29328021

RESUMO

The ribbon is the structural hallmark of cochlear inner hair cell (IHC) afferent synapses, yet its role in information transfer to spiral ganglion neurons (SGNs) remains unclear. We investigated the ribbon's contribution to IHC synapse formation and function using KO mice lacking RIBEYE. Despite loss of the entire ribbon structure, synapses retained their spatiotemporal development and KO mice had a mild hearing deficit. IHCs of KO had fewer synaptic vesicles and reduced exocytosis in response to brief depolarization; a high stimulus level rescued exocytosis in KO. SGNs exhibited a lack of sustained excitatory postsynaptic currents (EPSCs). We observed larger postsynaptic glutamate receptor plaques, potentially compensating for the reduced EPSC rate in KO. Surprisingly, large-amplitude EPSCs were maintained in KO, while a small population of low-amplitude slower EPSCs was increased in number. The ribbon facilitates signal transduction at physiological stimulus levels by retaining a larger residency pool of synaptic vesicles.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Células Ciliadas Auditivas/fisiologia , Neurônios Aferentes/fisiologia , Sinapses/fisiologia , Oxirredutases do Álcool , Animais , Proteínas Correpressoras , Proteínas de Ligação a DNA/deficiência , Camundongos , Camundongos Knockout , Fosfoproteínas/deficiência , Transdução de Sinais
6.
Sci Rep ; 6: 31668, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550540

RESUMO

Here we present spatio-temporal localization of Kremen1, a transmembrane receptor, in the mammalian cochlea, and investigate its role in the formation of sensory organs in mammal and fish model organisms. We show that Kremen1 is expressed in prosensory cells during cochlear development and in supporting cells of the adult mouse cochlea. Based on this expression pattern, we investigated whether Kremen1 functions to modulate cell fate decisions in the prosensory domain of the developing cochlea. We used gain and loss-of-function experiments to show that Kremen1 is sufficient to bias cells towards supporting cell fate, and is implicated in suppression of hair cell formation. In addition to our findings in the mouse cochlea, we examined the effects of over expression and loss of Kremen1 in the zebrafish lateral line. In agreement with our mouse data, we show that over expression of Kremen1 has a negative effect on the number of mechanosensory cells that form in the zebrafish neuromasts, and that fish lacking Kremen1 protein develop more hair cells per neuromast compared to wild type fish. Collectively, these data support an inhibitory role for Kremen1 in hair cell fate specification.


Assuntos
Cóclea/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/metabolismo , Sistema da Linha Lateral/metabolismo , Proteínas de Membrana/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Cóclea/embriologia , Cóclea/crescimento & desenvolvimento , Sistema da Linha Lateral/embriologia , Sistema da Linha Lateral/crescimento & desenvolvimento , Mecanorreceptores/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Neurogênese/genética , Interferência de RNA , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa