Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioorg Chem ; 148: 107436, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735265

RESUMO

BACKGROUND: Camptothecin (CPT), a pentacyclic alkaloid with antitumor properties, is derived from the Camptotheca acuminata. Topotecan and irinotecan (CPT derivatives) were first approved by the Food and Drug Administration for cancer treatment over 25 years ago and remain key anticancer drugs today. However, their use is often limited by clinical toxicity. Despite extensive development efforts, many of these derivatives have not succeeded clinically, particularly in their effectiveness against pancreatic cancer which remains modest. AIM OF THE STUDY: This study aimed to evaluate the therapeutic activity of FLQY2, a CPT derivative synthesized in our laboratory, against pancreatic cancer, comparing its efficacy and mechanism of action with those of established clinical drugs. METHODS: The cytotoxic effects of FLQY2 on cancer cells were assessed using an MTT assay. Patient-derived organoid (PDO) models were employed to compare the sensitivity of FLQY2 to existing clinical drugs across various cancers. The impact of FLQY2 on apoptosis and cell cycle arrest in Mia Paca-2 pancreatic cancer cells was examined through flow cytometry. Transcriptomic and proteomic analyses were conducted to explore the underlying mechanisms of FLQY2's antitumor activity. Western blotting was used to determine the levels of proteins regulated by FLQY2. Additionally, the antitumor efficacy of FLQY2 in vivo was evaluated in a pancreatic cancer xenograft model. RESULTS: FLQY2 demonstrated (1) potent cytotoxicity; (2) superior tumor-suppressive activity in PDO models compared to current clinical drugs such as gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, ivosidenib, infinitinib, and lenvatinib; (3) significantly greater tumor inhibition than paclitaxel liposomes in a pancreatic cancer xenograft model; (4) robust antitumor effects, closely associated with the inhibition of the TOP I and PDK1/AKT/mTOR signaling pathways. In vitro studies revealed that FLQY2 inhibited cell proliferation, colony formation, induced apoptosis, and caused cell cycle arrest at nanomolar concentrations. Furthermore, the combination of FLQY2 and gemcitabine exhibited significant inhibitory and synergistic effects. CONCLUSION: The study confirmed the involvement of topoisomerase I and the PDK1/AKT/mTOR pathways in mediating the antitumor activity of FLQY2 in treating Mia Paca-2 pancreatic cancer. Therefore, FLQY2 has potential as a novel therapeutic option for patients with pancreatic cancer.


Assuntos
Antineoplásicos , Apoptose , Camptotecina , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Camptotecina/farmacologia , Camptotecina/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Camundongos Nus , Células Tumorais Cultivadas , Linhagem Celular Tumoral
2.
J Nanobiotechnology ; 21(1): 215, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422665

RESUMO

It is reported that pulmonary fibrosis has become one of the major long-term complications of COVID-19, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. Recently, inhalable nanocarriers have received more attention due to their ability to improve the solubility of insoluble drugs, penetrate biological barriers of the lungs and target fibrotic tissues in the lungs. The inhalation route has many advantages as a non-invasive method of administration and the local delivery of anti-fibrosis agents to fibrotic tissues like direct to the lesion from the respiratory system, high delivery efficiency, low systemic toxicity, low therapeutic dose and more stable dosage forms. In addition, the lung has low biometabolic enzyme activity and no hepatic first-pass effect, so the drug is rapidly absorbed after pulmonary administration, which can significantly improve the bioavailability of the drug. This paper summary the pathogenesis and current treatment of pulmonary fibrosis and reviews various inhalable systems for drug delivery in the treatment of pulmonary fibrosis, including lipid-based nanocarriers, nanovesicles, polymeric nanocarriers, protein nanocarriers, nanosuspensions, nanoparticles, gold nanoparticles and hydrogel, which provides a theoretical basis for finding new strategies for the treatment of pulmonary fibrosis and clinical rational drug use.


Assuntos
COVID-19 , Nanopartículas Metálicas , Nanopartículas , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Ouro/metabolismo , Administração por Inalação , COVID-19/metabolismo , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Preparações Farmacêuticas/metabolismo , Nanopartículas/uso terapêutico
3.
J Nanobiotechnology ; 20(1): 347, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883097

RESUMO

BACKGROUND: The disease caused by plant pathogenic bacteria in the production, transportation, and storage of many crops has brought huge losses to agricultural production. N-acylhomoserine lactonases (AHLases) can quench quorum-sensing (QS) by hydrolyzing acylhomoserine lactones (AHLs), which makes them the promising candidates for controlling infections of QS-dependent pathogenic bacteria. Although many AHLases have been isolated and considered as a potentially effective preventive and therapeutic agents for bacterial diseases, the intrinsically poor ambient stability has seriously restricted its application. RESULTS: Herein, we showed that a spheroid enzyme-based hybrid nanoflower (EHNF), AhlX@Ni3(PO4)2, can be easily synthesized, and it exhibited 10 times AHL (3OC8-HSL) degradation activity than that with free AhlX (a thermostable AHL lactonase). In addition, it showed intriguing stability even at the working concentration, and retained ~ 100% activity after incubation at room temperature (25 °C) for 40 days and approximately 80% activity after incubation at 60 °C for 48 h. Furthermore, it exhibited better organic solvent tolerance and long-term stability in a complicated ecological environment than that of AhlX. To reduce the cost and streamline production processes, CSA@Ni3(PO4)2, which was assembled from the crude supernatants of AhlX and Ni3(PO4)2, was synthesized. Both AhlX@Ni3(PO4)2 and CSA@Ni3(PO4)2 efficiently attenuated pathogenic bacterial infection. CONCLUSIONS: In this study, we have developed N-acylhomoserine lactonase-based hybrid nanoflowers as a novel and efficient biocontrol reagent with significant control effect, outstanding environmental adaptability and tolerance. It was expected to overcome the bottlenecks of poor stability and limited environmental tolerance that have existed for over two decades and pioneered the practical application of EHNFs in the field of biological control.


Assuntos
Acil-Butirolactonas , Acil-Butirolactonas/metabolismo , Bactérias/metabolismo , Hidrolases de Éster Carboxílico , Doenças das Plantas/microbiologia , Doenças das Plantas/terapia , Percepção de Quorum
4.
J Nanobiotechnology ; 20(1): 402, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064403

RESUMO

BACKGROUND: 7-p-trifluoromethylphenyl-FL118 (FLQY2) is a camptothecin analog with excellent antitumor efficacy against various solid tumors. However, its poor solubility and low bioavailability limited the development of the drug. Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®), an emerging carrier for preparing solid dispersion (SD), encapsulated FLQY2 to circumvent the above limitations. RESULTS: In this project, FLQY2-SD was prepared by solvent evaporation method and self-assembled into micelles in aqueous solutions owing to the amphiphilic nature of Soluplus®. The physicochemical characterizations demonstrated that FLQY2 existed in a homogeneous amorphous form in SD and was rapidly dissolved. The micelles did not affect cytotoxicity or cellular uptake of FLQY2 in vitro, and the oral bioavailability was increased by 12.3-fold compared to the FLQY2 cyclodextrin suspension. The pharmacokinetics of FLQY2-SD showed rapid absorption, accumulation in the intestine, and slow elimination via fecal. Metabolite identification studies showed 14 novel metabolites were identified, including 12 phase I metabolites (M1-M12) and 2 phase II metabolites (M13-M14), of which M2 (oxidation after decarboxylation) and M7 (dioxolane ring cleavage) were the primary metabolites in the positive mode and negative mode, respectively. The tumor growth inhibition rate (TGI, 81.1%) of FLQY2-SD (1.5 mpk, p.o./QW) in tumor-bearing mice after oral administration was higher than that of albumin-bound Paclitaxel (15 mpk, i.v./Q4D) and Irinotecan hydrochloride (100 mpk, i.p./QW). CONCLUSIONS: The successful preparation, pharmacokinetics, and pharmacodynamics studies of FLQY2-SD showed that the solubility and bioavailability of FLQY2 were improved, which facilitated the further druggability development of FLQY2.


Assuntos
Excipientes , Micelas , Animais , Disponibilidade Biológica , Camptotecina/farmacologia , Excipientes/química , Camundongos , Solubilidade
5.
Molecules ; 27(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744795

RESUMO

Irinotecan and Topotecan are two Camptothecin derivatives (CPTs) whose resistance is associated with the high expression of breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp). To reverse this resistance, two novel CPTs, FL77-28 (7-(3-Fluoro-4-methylphenyl)-10,11-methylenedioxy-20(S)-CPT) and FL77-29 (7-(4-Fluoro-3-methylphenyl)-10,11-methylenedioxy-20(S)-CPT), were synthesized by our group. In this study, the anti-tumor activities of FL77-28, FL77-29, and their parent, FL118 (10,11-methylenedioxy-20(S)-CPT), were evaluated and the results showed that FL77-28 and FL77-29 had stronger anti-tumor activities than FL118. The transport and uptake of FL118, FL77-28, and FL77-29 were investigated in Caco-2 cells for the preliminary prediction of intestinal absorption. The apparent permeability coefficient from apical to basolateral (Papp AP-BL) values of FL77-28 and FL77-29 were (2.32 ± 0.04) × 10-6 cm/s and (2.48 ± 0.18) × 10-6 cm/s, respectively, suggesting that the compounds had moderate absorption. Since the transport property of FL77-28 was passive diffusion and the efflux ratio (ER) was less than 2, two chemical inhibitors were added to further confirm the involvement of efflux proteins. The results showed that FL77-28 was not a substrate of P-gp or BCRP, but FL77-29 was mediated by P-gp. In conclusion, FL77-28 might be a promising candidate to overcome drug resistance induced by multiple efflux proteins.


Assuntos
Camptotecina , Proteínas de Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transporte Biológico , Células CACO-2 , Camptotecina/análogos & derivados , Camptotecina/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo
6.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889485

RESUMO

Chrysomycin A, a compound derived from marine microorganisms, proved to have a specific great in vitro inhibitory effect on methicillin-resistant Staphylococcus aureus (MRSA). It exhibits high safety for the skin, as well as a better therapeutic effect than the current clinical drug, vancomycin. Nevertheless, its poor water solubility highly limits the application and reduces the bioavailability. In view of this, we developed a cream of chrysomycin A (CA) to enhance the solubility for the treatment of skin infection, while avoiding the possible toxicity caused by systemic administration. A comprehensive orthogonal evaluation system composed of appearance, spreading ability, and stability was established to find the optimal formula under experimental conditions. The final product was odorless and easy to be spread, with a lustrous, smooth surface. The particle size of the product met Chinese Pharmacopoeia specifications and the entire cream showed long-term stability in destructive tests. The in vitro and in vivo studies indicated that CA cream had a similar anti-MRSA activity to commercially available mupirocin, showing its potential as an efficacious topical delivery system for skin infections treatment.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Dermatopatias Infecciosas , Infecções Estafilocócicas , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mupirocina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico
7.
J Nanobiotechnology ; 19(1): 164, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059070

RESUMO

BACKGROUND: Chrysomycin A (CA) has been reported as numerous excellent biological activities, such as antineoplastic and antibacterial. Though, poor solubility of CA limited its application in medical field. Due to good amphiphilicity and potential anticancer effect of disodium glycyrrhizin (Na2GA) as an excipient, an amorphous solid dispersion (Na2GA/CA-BM) consisting of CA and Na2GA was prepared in the present study by mechanochemical technology (roll mill ML-007, zirconium balls, 30 rpm, 2.5 h) to improve the solubility and oral bioavailability of CA. Then, Na2GA/CA-BM was self-assembled to micelles in water. The interaction of CA and Na2GA in solid state were investigated by X-ray diffraction studies, polarized light microscopy, and scanning electron microscope. Meanwhile, the properties of the sample solution were analyzed by dynamic light scattering and transmission electron. Furthermore, the oral bioavailability and antitumor ability of Na2GA/CA-BM in vivo were tested, providing a theoretical basis for future application of CA on cancer therapy. RESULTS: CA encapsulated by Na2GA was self-assembled to nano-micelles in water. The average diameter of nano-micelle was 131.6 nm, and zeta potential was - 11.7 mV. Three physicochemical detections showed that CA was transformed from crystal into amorphous form after treated with ball milling and the solubility increased by 50 times. Na2GA/CA-BM showed a significant increase of the bioavailability about two time that of free CA. Compared with free CA, the in-vivo antitumor studies also exhibited that Na2GA/CA-BM had an excellent inhibition of tumor growth. CONCLUSIONS: Na2GA/CA-BM nanoparticles (131.6 nm, - 11.7 mV) prepared by simple and low-cost mechanochemical technology can improve oral bioavailability and antitumor efficacy of CA in vivo, suggesting a potential formulation for efficient anticancer treatment.


Assuntos
Administração Oral , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Micelas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Química Farmacêutica , Feminino , Ácido Glicirrízico/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Nanopartículas/química , Tamanho da Partícula , Solubilidade , Difração de Raios X
8.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209892

RESUMO

Ferritin naturally exists in most organisms and can specifically recognize the transferrin 1 receptor (TfR1), which is generally highly expressed on various types of tumor cells. The pH dependent reversible assembling and disassembling property of ferritin renders it as a suitable candidate for encapsulating a variety of anticancer drugs and imaging probes. Ferritins external surface is chemically and genetically modifiable which can serve as attachment site for tumor specific targeting peptides or moieties. Moreover, the biological origin of these protein cages makes it a biocompatible nanocarrier that stabilizes and protects the enclosed particles from the external environment without provoking any toxic or immunogenic responses. Recent studies, further establish ferritin as a multifunctional nanocarrier for targeted cancer chemotherapy and phototherapy. In this review, we introduce the favorable characteristics of ferritin drug carriers, the specific targeted surface modification and a multifunctional nanocarriers combined chemotherapy with phototherapy for tumor treatment. Taken together, ferritin is a potential ideal base of engineered nanoparticles for tumor therapy and still needs to explore more on its way.


Assuntos
Antígenos CD/metabolismo , Bioengenharia/métodos , Ferritinas/metabolismo , Neoplasias/metabolismo , Receptores da Transferrina/metabolismo , Animais , Portadores de Fármacos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Ferritinas/genética , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas , Neoplasias/tratamento farmacológico
9.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182734

RESUMO

On account of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, amphiphilic block copolymer-based micelles have been widely utilized for chemotherapy drug delivery. In order to further improve the antitumor ability and to also reduce undesired side effects of drugs, cell-penetrating peptides have been used to functionalize the surface of polymer micelles endowed with the ability to target tumor tissues. Herein, we first synthesized functional polyethylene glycol-polylactic acid (PEG-PLA) tethered with maleimide at the PEG section of the block polymer, which was further conjugated with a specific peptide, the transactivating transcriptional activator (TAT), with an approved capacity of aiding translocation across the plasma membrane. Then, TAT-conjugated, paclitaxel-loaded nanoparticles were self-assembled into stable nanoparticles with a favorable size of 20 nm, and displayed a significantly increased cytotoxicity, due to their enhanced accumulation via peptide-mediated cellular association in human breast cancer cells (MCF-7) in vitro. But when further used in vivo, TAT-NP-PTX showed an acceleration of the drug's plasma clearance rate compared with NP-PTX, and therefore weakened its antitumor activities in the mice model, because of its positive charge, its elimination by the endoplasmic reticulum system more quickly, and its targeting effect on normal cells leading towards being more toxic. So further modification of TAT-NP-PTX to shield TAT peptide's positive charges may be a hot topic to overcome the present dilemma.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Paclitaxel/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Portadores de Fármacos/química , Retículo Endoplasmático/metabolismo , Feminino , Produtos do Gene tat/química , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Micelas , Nanopartículas/química , Tamanho da Partícula , Polímeros/química
10.
Molecules ; 24(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991689

RESUMO

We developed a tumor-targeted contrast agent based on linear polylysine (PLL) by conjugating a small molecular imaging agent, fluorescent molecule and targeting agent amino phenylboronic acid onto the amino groups of polylysine, which can specifically target monosaccharide sialic acid residues overexpressing on the surface of tumor cell membranes. Further, 3,4,5,6-Tetrahydrophthalic anhydride (DCA) was attached to the free amino groups of the polylysine to change to a negative charge at physiology pH to lower the cytotoxicity, but it soon regenerated to a positive charge again once reaching the acidic intratumoral environment and therefore increased cell uptake. Laser confocal microscopy images showed that most of the polymeric contrast agents were bound to the cancer cell membrane. Moreover, the tumor targeting contrast agent showed the same magnetic resonance imaging (MRI) contrasting performance in vitro as the small molecule contrast agent used in clinic, which made it a promising tumor-targeting polymeric contrast agent for cancer diagnosis.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Animais , Meios de Contraste/síntese química , Meios de Contraste/química , Meios de Contraste/farmacologia , Cães , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Microscopia Confocal , Neoplasias/metabolismo , Neoplasias/patologia , Polilisina/síntese química , Polilisina/química , Polilisina/farmacologia
11.
Molecules ; 24(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754632

RESUMO

Pyrano[2,3-c]pyrazole derivatives have been reported as exerting various biological activities. One compound with potential anti-tumor activity was screened out by MTT assay from series of dihydropyrazopyrazole derivatives we had synthesized before using a one-pot, four-component reaction, and was named as 6-amino-4-(2-hydroxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (hereinafter abbreviated as AMDPC). The IC50 of AMDPC against Bcap-37 breast cancer cells was 46.52 µg/mL. Then the hydrophobic AMDPC was encapsulated in PEG-PLGA block copolymers, and then self-assembled as polymeric micelle (mPEG-PLGA/AMDPC) to improve both physiochemical and release profiles. The effect of mPEG-PLGA/AMDPC on BCAP-37 cancer cells showed similar anti-tumor effects as AMDPC. Furthermore, the anti-tumor mechanism of mPEG-PLGA/AMDPC was investigated, which can probably be attributed to stimulating the expression of P21 gene and therefore protein production on BCAP-37 cells, and then blocked the cell cycle through the P53-independent pathway both in S phase and G2 phase. Thus, mPEG-PLGA/AMDPC is a promising therapeutic agent for cancer treatment, and further in vivo studies will be developed.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pirazolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Células MCF-7 , Micelas , Nanotecnologia , Poliésteres/química , Polietilenoglicóis/química , Pirazolonas/síntese química , Pirazolonas/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Molecules ; 23(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467293

RESUMO

Cytisine-pterocarpan-derived compounds were biomimetically synthesized with (-)-cytisine and (-)-maackiain via a N,N-4-dimethyl-4-aminopyridine (DMAP)-mediated synthetic strategy in a mild manner. In the present study, tonkinensine B (4) was elaborated in good and high yields with the optimized reaction conditions. The in vitro cytotoxicity of compound 4 was evaluated against breast cancer cell lines and showed that 4 had a better cytotoxicity against MDA-MB-231 cells (IC50 = 19.2 µM). Depending on the research on cytotoxicities of 4 against RAW 264.7 and BV2 cells, it was suggested that 4 produced low cytotoxic effects on the central nervous system. Further study indicated that 4 demonstrated cytotoxic activity against MDA-MB-231 cells and the cytotoxic activity was induced by apoptosis. The results implied that the apoptosis might be induced by mitochondrion-mediated apoptosis via regulating the ratio of Bax/Bcl-2 and promoting the release of cytochrome c from the mitochondrion to the cytoplasm in MDA-MB-231 cells.


Assuntos
Neoplasias da Mama/metabolismo , Citocromos c/metabolismo , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Mitocôndrias/metabolismo , Alcaloides/química , Animais , Azocinas/química , Mimetismo Biológico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Compostos Heterocíclicos com 2 Anéis/química , Humanos , Células MCF-7 , Camundongos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pterocarpanos/química , Quinolizinas/química , Células RAW 264.7 , Proteína X Associada a bcl-2/metabolismo
13.
J Am Chem Soc ; 136(9): 3579-88, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24524232

RESUMO

In vivo monitoring of the biodistribution and activation of prodrugs is urgently required. Near infrared (NIR) fluorescence-active fluorophores with excellent photostability are preferable for tracking drug release in vivo. Herein, we describe a NIR prodrug DCM-S-CPT and its polyethylene glycol-polylactic acid (PEG-PLA) loaded nanoparticles as a potent cancer therapy. We have conjugated a dicyanomethylene-4H-pyran derivative as the NIR fluorophore with camptothecin (CPT) as the anticancer drug using a disulfide linker. In vitro experiments verify that the high intracellular glutathione (GSH) concentrations in tumor cells cause cleavage of the disulfide linker, resulting in concomitantly the active drug CPT release and significant NIR fluorescence turn-on with large Stokes shift (200 nm). The NIR fluorescence of DCM-S-CPT at 665 nm with fast response to GSH can act as a direct off-on signal reporter for the GSH-activatable prodrug. Particularly, DCM-S-CPT possesses much better photostability than ICG, which is highly desirable for in situ fluorescence-tracking of cancer chemotherapy. DCM-S-CPT has been successfully utilized for in vivo and in situ tracking of drug release and cancer therapeutic efficacy in living animals by NIR fluorescence. DCM-S-CPT exhibits excellent tumor-activatable performance when intravenously injected into tumor-bearing nude mice, as well as specific cancer therapy with few side effects. DCM-S-CPT loaded in PEG-PLA nanoparticles shows even higher antitumor activity than free CPT, and is also retained longer in the plasma. The tumor-targeting ability and the specific drug release in tumors make DCM-S-CPT as a promising prodrug, providing significant advances toward deeper understanding and exploration of theranostic drug-delivery systems.


Assuntos
Corantes Fluorescentes/uso terapêutico , Raios Infravermelhos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Glutationa/metabolismo , Humanos , Espaço Intracelular/metabolismo , Ácido Láctico/química , Camundongos , Imagem Molecular , Nanopartículas/química , Poliésteres , Polietilenoglicóis/química , Polímeros/química , Pró-Fármacos/química , Pró-Fármacos/metabolismo
14.
J Control Release ; 366: 65-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145662

RESUMO

Renal diseases have become an increasingly concerned public health problem in the world. Kidney-targeted drug delivery has profound transformative potential on increasing renal efficacy and reducing extra-renal toxicity. Protein and peptide-based kidney targeted drug delivery systems have garnered more and more attention due to its controllable synthesis, high biocompatibility and low immunogenicity. At the same time, the targeting methods based on protein/peptide are also abundant, including passive renal targeting based on macromolecular protein and active targeting mediated by renal targeting peptide. Here, we review the application and the drug loading strategy of different proteins or peptides in targeted drug delivery, including the ferritin family, albumin, low molecular weight protein (LMWP), different peptide sequence and antibodies. In addition, we summarized the factors influencing passive and active targeting in drug delivery system, the main receptors related to active targeting in different kidney diseases, and a variety of nano forms of proteins based on the controllable synthesis of proteins.


Assuntos
Nefropatias , Rim , Humanos , Rim/metabolismo , Proteínas/química , Peptídeos/química , Sistemas de Liberação de Medicamentos , Nefropatias/tratamento farmacológico
15.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1792-1805, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38914492

RESUMO

Cell culture is a fundamental tool for cell-based assays in biological and preclinical research. The measurements of cell culture, including cell count, viability, and metabolic activity, can reflect the conditions of cells under culture conditions. The conventional cell culture and detection methods have problems such as high consumption of reagents and samples, inability to monitor cell status in real time, and difficulty in spatiotemporally adjusting the cell microenvironment. A cell impedance sensor measures changes in the electrical impedance of cells through alternating current, enabling real-time monitoring of impedance changes caused by cell activities such as attachment, growth, proliferation, and migration. Microfluidic chips are praised for reducing complex biological processes, integrating multiple analysis modes, and achieving high automation in detection. Integrating microfluidic chips with cell impedance sensors greatly improves the capability and efficiency of cell-related analysis. This review outlines the application of microfluidic chip-based impedance sensors in 2D and 3D cell systems and summarizes the research progress in application of such sensors in research on cell growth, proliferation, viability, metabolic activity, and drug screening. Finally, this review prospects the future development trends and possible challenges, providing ideas for the development of microfluidic chips integrated with electrical impedance sensors in drug screening.


Assuntos
Impedância Elétrica , Humanos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Proliferação de Células , Sobrevivência Celular , Dispositivos Lab-On-A-Chip , Animais
16.
Eur J Med Chem ; 268: 116207, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364715

RESUMO

The inhibition of P-glycoprotein (P-gp) has emerged as an intriguing strategy for circumventing multidrug resistance (MDR) in anticancer chemotherapy. In this study, we have designed and synthesized 30 indole-selenides as a new class of P-gp inhibitors based on the scaffold hopping strategy. Among them, the preferred compound H27 showed slightly stronger reversal activity (reversal fold: 271.7 vs 261.6) but weaker cytotoxicity (inhibition ratio: 33.7% vs 45.1%) than the third-generation P-gp inhibitor tariquidar on the tested MCF-7/ADR cells. Rh123 accumulation experiments and Western blot analysis demonstrated that H27 displayed excellent MDR reversal activity by dose-dependently inhibiting the efflux function of P-gp rather than its expression. Besides, UIC-2 reactivity shift assay revealed that H27 could bind to P-gp directly and induced a conformation change of P-gp. Moreover, docking study revealed that H27 matched well in the active pockets of P-gp by forming some key H-bonding interactions, arene-H interactions and hydrophobic contacts. These results suggested that H27 is worth to be a starting point for the development of novel Se-containing P-gp inhibitors for clinic use.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Doxorrubicina/farmacologia , Células MCF-7 , Rodamina 123/química , Rodamina 123/metabolismo , Rodamina 123/farmacologia
17.
J Am Chem Soc ; 135(2): 933-40, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23253016

RESUMO

Cell-penetrating peptides (CPPs) such as transactivator of transcription (TAT) peptide have long been explored for promoting in vitro cell penetration and nuclear targeting of various cargos, but their positive charges cause strong nonspecific interactions, making them inapplicable for many in vivo applications. In this work, we used TAT to demonstrate a molecular modification approach for inhibiting nonspecific interactions of CPPs in the bloodstream while reactivating their functions in the targeted tissues or cells. The TAT lysine residues' amines were amidized to succinyl amides ((a)TAT), completely inhibiting TAT's nonspecific interactions in the blood compartment; once in the acidic tumor interstitium or internalized into cell endo/lysosomes, the succinyl amides in the (a)TAT were quickly hydrolyzed, fully restoring TAT's functions. Thus, (a)TAT-functionalized poly(ethylene glycol)-block-poly(ε-caprolactone) micelles achieved long circulation in the blood compartment and efficiently accumulated and delivered doxorubicin to tumor tissues, giving rise to high antitumor activity and low cardiotoxicity. This amidization strategy effectively and easily enables in vivo applications of CPPs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Peptídeos Penetradores de Células/uso terapêutico , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Micelas , Linhagem Celular Tumoral , Feminino , Humanos , Modelos Biológicos
18.
Curr Microbiol ; 67(3): 322-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23620174

RESUMO

CaIPF19998, a functionally unknown gene in Candida albicans, was identified by its homology to Saccharomyces cerevisiae AIF1 gene, which is involved in cell apoptosis. In this study, ipf19998 null mutant was generated with the URA-blaster method and the construction of overexpression of CaIPF19998 was measured by quantitative RT-PCR. Minimal inhibitory concentrations determination showed that the ipf19998 overexpressed strains was more resistant to the antifungals tested than the wildtype (strain CAI4). The 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2Htetrazolium-5-carboxanilide reduction assay showed that CaIPF19998 could enhance the capacity of C. albicans biofilms formation. On Candida biofilms mode, intracellular levels of reactive oxygen species were significantly decreased and real-time RT-PCR showed that some important redox-related genes, including ALD5, CIT1, PIL1, AHP1, TRX1 and TSA1, were up-regulated in the CaIPF19998 overexpressed strains. These results demonstrate that CaIPF19998 played an important role in C. albicans biofilms formation and intracellular redox homeostasis, therefore led to a close relationship between CaIPF19998 and drug susceptibility in C. albicans.


Assuntos
Antifúngicos/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Biofilmes/efeitos dos fármacos , Candida albicans/genética , Proteínas Fúngicas/genética , Deleção de Genes , Homeostase , Testes de Sensibilidade Microbiana , Oxirredução
19.
Eur J Pharmacol ; 955: 175925, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473981

RESUMO

Dysregulation of nucleocytoplasmic shuttling impairs cellular homeostasis and promotes cancer development. KPNB1 is a member of karyopherin ß family, mediating the transportation of proteins from the cytoplasm to the nucleus. In a variety of cancers, the expression of KPNB1 is upregulated to facilitate tumor growth and progression. Both downregulation of KPNB1 level and inhibition of KPNB1 activity prevent the entry of cancer-related transcription factors into the nucleus, subsequently suppressing the proliferation and metastasis of cancer cells. Currently, five KPNB1 inhibitors have been reported and exhibited good efficacy against cancer. This paper provides an overview of the role and mechanism of KPNB1 in different cancers and KPNB1-targeted anticancer compounds which hold promise for the future.


Assuntos
Neoplasias , beta Carioferinas , Humanos , Transporte Ativo do Núcleo Celular , beta Carioferinas/genética , beta Carioferinas/metabolismo , Regulação para Baixo , Núcleo Celular/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
20.
Adv Healthc Mater ; 12(26): e2300881, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37267625

RESUMO

Superficial skin diseases, including skin infections and tumors, are common healthcare burdens. In this study, the in vivo activity of chrysomycin A (CA) is explored, and a transdermal liposomal CA formulation is further constructed for the simultaneous treatment of cutaneous melanoma and cutaneous methicillin-resistant Staphylococcus aureus (MRSA) infection. The prepared liposomes (TD-LP-CA) display a strong antitumor effect with an IC50 value of less than 0.1 µm in B16-F10 cells, suppress the proliferation of MRSA with a minimum inhibitory concentration (MIC) of 1 µm, and eradicate established MRSA biofilms at 10× MIC in vitro. More importantly, TD-LP-CA shows enhanced stratum corneum (SC) penetration, reaching more than 500 µm beneath the skin's surface due to modification with the TD peptide, and demonstrates excellent subcutaneous tumor penetration after skin application in vivo. TD-LP-CA displays an excellent therapeutic effect against intradermal MRSA infection in mice after topical dermal administration, as well as a moderate inhibitory effect on subcutaneous melanoma with a 75% tumor inhibition rate. The liposomes prepared herein can be a promising carrier for transcutaneous CA transfer for the treatment of superficial diseases such as skin tumors and infections due to their ability to overcome the skin barrier.


Assuntos
Melanoma , Staphylococcus aureus Resistente à Meticilina , Neoplasias Cutâneas , Animais , Camundongos , Lipossomos , Administração Cutânea , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa