Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nature ; 607(7919): 480-485, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859196

RESUMO

Pyroelectricity describes the generation of electricity by temporal temperature change in polar materials1-3. When free-standing pyroelectric materials approach the 2D crystalline limit, how pyroelectricity behaves remained largely unknown. Here, using three model pyroelectric materials whose bonding characters along the out-of-plane direction vary from van der Waals (In2Se3), quasi-van der Waals (CsBiNb2O7) to ionic/covalent (ZnO), we experimentally show the dimensionality effect on pyroelectricity and the relation between lattice dynamics and pyroelectricity. We find that, for all three materials, when the thickness of free-standing sheets becomes small, their pyroelectric coefficients increase rapidly. We show that the material with chemical bonds along the out-of-plane direction exhibits the greatest dimensionality effect. Experimental observations evidence the possible influence of changed phonon dynamics in crystals with reduced thickness on their pyroelectricity. Our findings should stimulate fundamental study on pyroelectricity in ultra-thin materials and inspire technological development for potential pyroelectric applications in thermal imaging and energy harvesting.

2.
Molecules ; 29(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398519

RESUMO

To enhance the bioavailability and antihypertensive effect of the anti-depressant drug citalopram hydrobromide (CTH) we developed a sustained-release transdermal delivery system containing CTH. A transdermal diffusion meter was first used to determine the optimal formulation of the CTH transdermal drug delivery system (TDDS). Then, based on the determined formulation, a sustained-release patch was prepared; its physical characteristics, including quality, stickiness, and appearance, were evaluated, and its pharmacokinetics and irritation to the skin were evaluated by applying it to rabbits and rats. The optimal formulation of the CTH TDDS was 49.2% hydroxypropyl methyl cellulose K100M, 32.8% polyvinylpyrrolidone K30, 16% oleic acid-azone, and 2% polyacrylic acid resin II. The system continuously released an effective dose of CTH for 24 h and significantly enhanced its bioavailability, with a higher area under the curve, good stability, and no skin irritation. The developed CTH TDDS possessed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it has the potential for clinical application as an antidepressant.


Assuntos
Citalopram , Absorção Cutânea , Ratos , Coelhos , Animais , Citalopram/farmacologia , Citalopram/metabolismo , Preparações de Ação Retardada/farmacologia , Administração Cutânea , Pele , Sistemas de Liberação de Medicamentos , Adesivo Transdérmico
3.
Small ; 19(42): e2302935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322314

RESUMO

Organic-inorganic hybrid materials often face a stability challenge. ß-ZnTe(en)0.5 , which uniquely has over 15-year real-time degradation data, is taken as a prototype structure to demonstrate an accelerated thermal aging method for assessing the intrinsic and ambient-condition long-term stability of hybrid materials. Micro-Raman spectroscopy is used to investigate the thermal degradation of ß-ZnTe(en)0.5 in a protected condition and in air by monitoring the temperature dependences of the intrinsic and degradation-product Raman modes. First, to understand the intrinsic degradation mechanism, the transition state of the degradation is identified, then using a density functional theory, the intrinsic energy barrier between the transition state and ground state is calculated to be 1.70 eV, in excellent agreement with the measured thermal degradation barrier of 1.62 eV in N2 environment. Second, for the ambient-condition degradation, a reduced thermal activation barrier of 0.92 eV is obtained due to oxidation, corresponding to a projected ambient half-life of 40 years at room temperature, in general agreement with the experimental observation of no apparent degradation over 15 years. Furthermore, the study reveals a mechanism, conformation distortion enhanced stability, which plays a pivotal role in forming the high kinetic barrier, contributing greatly to the impressive long-term stability of ß-ZnTe(en)0.5 .

4.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37358218

RESUMO

Silver sulfide in monoclinic phase (α-Ag2S) has attracted significant attention owing to its metal-like ductility and promising thermoelectric properties near room temperature. However, first-principles studies on this material by density functional theory calculations have been challenging as both the symmetry and atomic structure of α-Ag2S predicted from such calculations are inconsistent with experimental findings. Here, we propose that a dynamical approach is imperative for correctly describing the structure of α-Ag2S. The approach is based on a combination of ab initio molecular dynamics simulation and deliberately chosen density functional considering both proper treatment of the van der Waals interaction and on-site Coulomb interaction. The obtained lattice parameters and atomic site occupations of α-Ag2S are in good agreement with experimental data. A stable phonon spectrum at room temperature can be obtained from this structure, which also yields a bandgap in accord with experimental measurements. The dynamical approach thus paves the way for studying this important ductile semiconductor in not only thermoelectric but also optoelectronic applications.

5.
Chemistry ; 28(32): e202200234, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357741

RESUMO

In recent years all-solid-state sodium-ion batteries (SS-SIBs) have drawn significant attention due to their potential to be safer and lower cost than lithium-ion batteries. However, the lack of sodium solid-state electrolytes with high ionic conductivity has become one of the major challenges. Here, with first-principles computation we took NaCuZrS3 , consisting of earth-abundant and environmentally benign elements only, as an example to study Na-ion transport in the post-perovskite-like structure and used computation-guided design to improve its potential as a solid-state electrolyte. With ab initio molecular dynamics simulation and nudged elastic band calculation, we studied possible diffusion mechanisms in this material and found that Na ion interstitials have a favorable migration barrier of 0.22 eV, which is among the smallest in the literature reported values. Considering the large formation energy of Frenkel defects, we proposed doping strategy to introduce extra Na interstitials in the material. Our study suggests that the post-perovskite-like sulfides are worth of exploration for applications in SS-SIBs.

6.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361834

RESUMO

In this study, we developed a sustained-release transdermal delivery system containing losartan potassium (LP) and verapamil hydrochloride (VPH). LP and VPH have low bioavailability and long half-life. Therefore, the development of an optimum administration mode is necessary to overcome these drawbacks and enhance the antihypertensive effect. A transdermal diffusion meter was used to determine the optimal formulation of LP-VPH transdermal drug delivery systems (TDDS). Based on in vitro results, a sustained-release patch was prepared. Physical characteristics, including quality, stickiness, and appearance, were evaluated in vitro, while pharmacokinetics and skin irritation were evaluated in vivo. The results showed that 8.3% polyvinyl alcohol, 74.7% polyvinylpyrrolidone K30, 12% oleic acid-azone, and 5% polyacrylic acid resin II provided an optimized TDDS product for effective administration of LP and VPH. Furthermore, in vitro and in vivo release tests showed that the system continuously released LP and VPH for 24 h. The pharmacokinetic results indicated that although the maximum concentration was lower, both the area under the curve from 0-time and the mean residence time of the prepared patch were significantly higher than those of the oral preparations. Furthermore, the prepared LP-VPH transdermal patch showed good stability and no skin irritation. The developed LP-VPH TDDS showed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it is an ideal formulation.


Assuntos
Losartan , Verapamil , Preparações de Ação Retardada/farmacocinética , Absorção Cutânea , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos
7.
Small ; 17(4): e2006279, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33373112

RESUMO

Cs2 SnI6 perovskite displays excellent air stability and a high absorption coefficient, promising for photovoltaic and optoelectronic applications. However, Cs2 SnI6 -based device performance is still low as a result of lacking optimized synthesis approaches to obtain high quality Cs2 SnI6 crystals. Here, a new simple method to synthesize single crystalline Cs2 SnI6 perovskite at a liquid-liquid interface is reported. By controlling solvent conditions and Cs2 SnI6 supersaturation at the liquid-liquid interface, Cs2 SnI6 crystals can be obtained from 3D to 2D growth with controlled geometries such as octahedron, pyramid, hexagon, and triangular nanosheets. The formation mechanisms and kinetics of complex shapes/geometries of high quality Cs2 SnI6 crystals are investigated. Freestanding single crystalline 2D nanosheets can be fabricated as thin as 25 nm, and the lateral size can be controlled up to sub-millimeter regime. Electronic property of the high quality Cs2 SnI6 2D nanosheets is also characterized, featuring a n-type conduction with a high carrier mobility of 35 cm2 V-1 s-1 . The interfacial reaction-controlled synthesis of high-quality crystals and mechanistic understanding of the crystal growth allow to realize rational design of materials, and the manipulation of crystal growth can be beneficial to achieve desired properties for potential functional applications.

8.
Phys Chem Chem Phys ; 21(17): 8721-8728, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30968099

RESUMO

The photosynthetic protein complex, photosystem II (PSII), conducts the light-driven water-splitting reaction with unrivaled efficiency. Proton-coupled electron transfer (PCET) reactions at the redox-active tyrosine residues are thought to play a critical role in the water-splitting chemistry. Addressing the fundamental question as to why the tyrosine residue, YZ, is kinetically competent in comparison to a symmetrically placed tyrosine residue, YD, is important for the elucidation of the mechanism of PCET in the water-splitting reaction of PSII. Here, using all-quantum-mechanical calculations we study PCET at the YZ and YD residues of PSII. We find that when YZ is in its protein matrix under physiological conditions, the HOMO of YZ constitutes the HOMO of the whole system. In contrast, the HOMO of YD is buried under the electronic states localized elsewhere in the protein matrix and PCET at YD requires the transfer of the phenolic proton, which elevates the HOMO of YD to become the HOMO of the whole system. This leads to the oxidation of YD, albeit on a slower timescale. Our study reveals that the key differences between the electronic structure of YZ and YD are primarily determined by the protonation state of the respective hydrogen-bonding partners, D1-His190 and D2-His189, or more generally by the H-bonding network of the protein matrix.


Assuntos
Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Transporte de Elétrons/efeitos da radiação , Ligação de Hidrogênio/efeitos da radiação , Cinética , Oxirredução , Fotossíntese/efeitos da radiação , Conformação Proteica , Prótons , Teoria Quântica , Tirosina/química , Água/química
9.
Phys Chem Chem Phys ; 21(20): 10497-10504, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31070626

RESUMO

ß-FeSi2, a semiconductor material made of two of the most earth-abundant elements, has important applications in thermoelectrics, photovoltaics and optoelectronics owing to its attractive properties such as suitable band gap and air stability over a wide temperature range. While point defects always play a vital role in semiconductor materials, only sporadic studies have been dedicated to the defects in ß-FeSi2. Here, using first-principles calculations we systematically investigate the intrinsic point defects in ß-FeSi2. Our results reveal that the formation energies of the intrinsic defects in ß-FeSi2 are high enough to prevent them from forming in a significant concentration under thermal equilibrium growth conditions. As a possible kinetic process generating intrinsic defects, we study the α-to-ß phase transition of FeSi2. We find that the phase transition is a slow process occurring on the time scale of an hour. Incomplete phase transition may lead to kinetically formed intrinsic defects. We further calculate the activation energies of the intrinsic defects and show that the experimentally observed conductivity of pure ß-FeSi2 should be a result of unintentional doping. Possible extrinsic impurities that may lead to n-type and p-type conductivity and their activation energies are calculated, which are in good agreement with available experiments. Our results provide guidance for optimizing the doping strategy of ß-FeSi2 for device applications.

10.
Phys Chem Chem Phys ; 21(39): 22160, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552964

RESUMO

Correction for 'Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective' by Jun Chai et al., Phys. Chem. Chem. Phys., 2019, 21, 8721-8728.

11.
Phys Chem Chem Phys ; 21(39): 22159, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552965

RESUMO

Correction for 'Thermodynamics, kinetics and electronic properties of point defects in ß-FeSi2' by Jun Chai et al., Phys. Chem. Chem. Phys., 2019, 21, 10497-10504.

12.
Angew Chem Int Ed Engl ; 58(51): 18394-18398, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31628706

RESUMO

An exceptionally strong solvation effect of dimethyl sulfoxide (DMSO) on I2 is identified by the largest shift observed so far of the I2 Raman peak with respect to I2 vapor and by elongated I-I bond lengths in first-principles molecular-dynamics simulations. This effect together with strong binding by an RuO2 surface to I2 is found to invert the direction of the reaction I- +I2 ⇌I3 - to the left-hand side. Inspired by this finding, we prepared a Li-O2 battery with the Li/DMSO+LiI/RuO2 structure. The synergic action of DMSO and RuO2 on I2 is found to suppress the shuttle effect of the redox mediator (RM) by anchoring I2 molecules, the oxidation product of the RM. Significantly enhanced stability is demonstrated over 100 cycles at charging voltage below 3.65 V.

13.
J Am Chem Soc ; 140(46): 15753-15763, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30362747

RESUMO

Advances in perovskite solar cells require development of means to control and eliminate the nonradiative charge recombination pathway. Using ab initio nonadiabatic molecular dynamics, we demonstrate that charge recombination in perovskites is extremely sensitive to the charge state of the halogen vacancy. A missing iodine anion in MAPbI3 has almost no effect on charge losses. However, when the vacancy is reduced, the recombination is accelerated by up to 2 orders of magnitude. The acceleration occurs due to formation of a deep hole trap in the singly reduced vacancy, and both deep and shallow hole traps for the doubly reduced vacancy. The shallow hole involves a significant rearrangement of the Pb-I lattice, leading to a new chemical species: a Pb-Pb dimer bound by the vacancy charge, and under-coordinated iodine bonds. Hole trapping by the singly reduced iodide vacancy operates parallel to recombination of free electron and hole, accelerating charge losses by a factor of 5. The doubly reduced vacancy acts by a sequential mechanism-free hole, to shallow trap, to deep trap, to free electron, and accelerates the recombination by a factor of 50. The study demonstrates that iodine anion vacancy can be beneficial to the performance, because it causes minor changes to the charge carrier lifetime, while increasing charge carrier concentration. However, the neutral iodine and iodine cation vacancies should be strongly avoided. The detailed insights into the charge carrier trapping and relaxation mechanisms provided by the simulation are essential for development of efficient photocatalytic, photovoltaic, optoelectronic and related devices.

14.
Phys Chem Chem Phys ; 19(5): 3820-3825, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28102377

RESUMO

A semi-Dirac semimetal is a material that exhibits linear band dispersion in one direction and quadratic band dispersion in the orthogonal direction and, therefore, hosts massless and massive fermions at the same point in the momentum space. While a number of interesting physical properties have been predicted in semi-Dirac semimetals, it has been rare to realize such materials in condensed matter. Based on the fact that some honeycomb materials are easily oxidized or chemically absorb other atoms, here, we theoretically propose an approach of modifying their band structures by covalent addition of group-VI elements and strain engineering. We predict a silicene oxide with the chemical formula of Si2O to be a candidate semi-Dirac semimetal. Our approach is backed by the analysis and understanding of the effect of p-orbital frustration on the band structure of graphene-like materials.

15.
Nano Lett ; 16(2): 1317-22, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26799596

RESUMO

Interface engineering is critical for enriching the electronic and transport properties of two-dimensional materials. Here, we identify a new stacking, named Aδ, in few-layer phosphorenes (FLPs) and black phosphorus (BP) based on first-principles calculation. With its low formation energy, the Aδ stacking could exist in FLPs and BP as a stacking fault. The presence of the Aδ stacking fault induces a direct to indirect transition of the band gap in FLPs. It also affects the carrier mobilities by significantly increasing the carrier effective masses. More importantly, the Aδ stacking enables the fabrication of a whole spectrum of lateral junctions with all the type-I, II, and III alignments simply through the manipulation of the van der Waals stacking without resorting to any chemical modification. This is achieved by the widely tunable electron affinity and ionization potential of FLPs and BP with the Aδ stacking.

16.
Phys Chem Chem Phys ; 18(4): 2776-83, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26725589

RESUMO

Using density functional theory calculation we investigate the carbon doping of anatase TiO2, a technique widely studied for visible-light driven water splitting. By a detailed analysis of the thermodynamics of C defects in TiO2, we show that any significant concentration of C dopants in the TiO2 lattice must be a result of non-equilibrium doping, which emphasizes the importance of kinetics stabilized C defects. Based on the band gaps calculated using hybrid density functionals, we exclude the possibility of C occupying Ti lattice sites or interstitial sites to enhance visible-light absorption of TiO2, as extensively discussed in the literature. Also, the recently proposed defect with a CO species occupying two O sites yields a too small band gap for water splitting. Two defects that can effectively reduce the band gap for the water splitting application are identified to be: (1) the CO-VO complex, i.e., a C substituting for O (CO) paired with an O vacancy (VO) and (2) the (C2)2O complex with a C dimer (C2) occupying two neighboring O vacancies. Compared with the CO-VO complex, (C2)2O exhibits strong binding (greater than 2.5 eV) between the two C atoms, which could significantly enhance its kinetic stability to survive from high temperature annealing. With a reduced band gap of about 1.4 eV, carbon dimers could be ideal for kinetic doping of anatase TiO2 to enhance its visible-light activity in photocatalytic reactions. Molecular doping using C2H2 or C2H4 as C precursors has been proposed to introduce the carbon dimers into TiO2.

17.
J Chem Phys ; 145(2): 021102, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27421389

RESUMO

Bulk black phosphorus has two optical phonon modes labeled as Ag (2) and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag (2) modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy.

18.
Proc Natl Acad Sci U S A ; 110(3): 908-11, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23277576

RESUMO

Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations.

19.
Nano Lett ; 15(1): 581-5, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25548882

RESUMO

Chalcogenide perovskites are proposed for photovoltaic applications. The predicted band gaps of CaTiS3, BaZrS3, CaZrSe3, and CaHfSe3 with the distorted perovskite structure are within the optimal range for making single-junction solar cells. The predicted optical absorption properties of these materials are superior compared with other high-efficiency solar-cell materials. Possible replacement of the alkaline-earth cations by molecular cations, e.g., (NH3NH3)(2+), as in the organic-inorganic halide perovskites (e.g., CH3NH3PbI3), are also proposed and found to be stable. The chalcogenide perovskites provide promising candidates for addressing the challenging issues regarding halide perovskites such as instability in the presence of moisture and containing the toxic element Pb.

20.
Phys Chem Chem Phys ; 17(26): 16779-83, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26050615

RESUMO

Based on first-principles calculations, we reveal that in the photocatalytic oxygen evolution reaction (OER) at the TiO2/water interface, the formation of an O-O bond always involves the anti-bonding σ2p* state elevated from the valence band into the conduction band of TiO2 regardless of a detailed reaction pathway. The role of photoholes is to deplete this anti-bonding state once it emerges into the band gap. The reaction barrier is thus determined by the onset where photoholes enter the reaction. This process represents a new reaction mechanism, termed nucleus-coupled electron transfer (NCET), where electron transfer is enabled by the movement of nuclei that promotes the reactive orbital to become the frontier orbital. The NCET mechanism for the OER is shown to exhibit an overall kinetic barrier surmountable at room temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa