Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nano Lett ; 22(13): 5385-5391, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35748677

RESUMO

The multiphonon process plays an essential role in understanding electron-phonon coupling, which significantly influences the optical and transport properties of solids. Multiphonon processes have been observed in many materials, but how to distinguish them directly by their spectral characteristics remains controversial. Here, we report high-order Raman scattering up to 10 orders and hot luminescence involving 11 orders of phonons in Mn-doped ZnO nanowires by selecting the excitation energy. Our results show that the intensity distribution of high-order Raman scattering obeys an exponential decrease as the order number increases, while hot luminescence is fitted with a Poisson distribution with a resonance factor. Their linewidth and frequency can be well explained by two different transition models. Our work provides a paradigm for understanding the multiphonon-involved decay process of an excited state and may inspire studies of the statistical characteristics of excited state decay.

2.
Nano Lett ; 22(17): 7129-7135, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993841

RESUMO

Laser cooling atoms and molecules to ultralow temperatures has produced plenty of opportunities in fundamental physics, precision metrology, and quantum science. Although theoretically proposed over 40 years, the laser cooling of certain lattice vibrations (i.e., phonon) remains a challenge owing to the complexity of solid structures. Here, we demonstrate Raman cooling of a longitudinal optical phonon in two-dimensional semiconductor WS2 by red-detuning excitation at the sideband of the exciton (bound electron-hole pair). Strong coupling between the phonon and exciton and appreciable optomechanical coupling rates provide access to cooling high-frequency phonons that are robust against thermal decoherence even at room temperature. Our experiment opens possibilities of laser cooling and control of individual optical phonon and, eventually, possible cooling of matter in van der Waals semiconductor.

3.
Nano Lett ; 22(23): 9365-9371, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36399405

RESUMO

The lead halide perovskite has become a promising candidate for the study of exciton polaritons due to their excellent optical properties. Here, both experimental and simulated results confirm the existence of two kinds of Fabry-Pérot microcavities in a single CsPbBr3 microwire with an isosceles right triangle cross section, and we experimentally demonstrate that confined photons in a straight and a folded Fabry-Pérot microcavity are strongly coupled with excitons to form exciton polaritons. Furthermore, we reveal the polarization characteristic and double-cavity modulation of exciton polaritons emission by polarization-resolved fluorescence spectroscopy. Our results not only prove that the modulation of exciton polaritons emission can occur in this simple double-cavity system but also provide a possibility to develop related polariton devices.

4.
Exp Cell Res ; 400(2): 112492, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529710

RESUMO

DNA N6-methyladenine (N6-mA) was recently recognized as a new epigenetic modification in mammalian genome, and ALKBH1 was discovered as its demethylase. Knock-out mice studies revealed that ALKBH1 was indispensable for normal embryonic development. However, the function of ALKBH1 in myogenesis is largely unknown. In this study, we found that N6-mA showed a steady increase, going along with a strong decrease of ALKBH1 during skeletal muscle development. Our results also showed that ALKBH1 enhanced proliferation and inhibited differentiation of C2C12 cells. Genome-wide transcriptome analysis and reporter assays further revealed that ALKBH1 accomplished the differentiation inhibiting function by regulating a core set of genes and multiple signaling pathways, including increasing chemokine (C-X-C motif) ligand 14 (CXCL14) and activating ERK signaling. Taken together, our results demonstrated that ALKBH1 is critical for the myogenic differentiation of C2C12 cells, and suggested that N6-mA might be a new epigenetic mechanism for the regulation of myogenesis.


Assuntos
Adenina/análogos & derivados , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Diferenciação Celular , Epigênese Genética , Desenvolvimento Muscular , Músculo Esquelético/patologia , Mioblastos/patologia , Adenina/química , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Animais , Metilação de DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mioblastos/metabolismo
5.
Biochem Biophys Res Commun ; 552: 52-58, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740664

RESUMO

METTL3 increasing the mature miRNA levels via N6-Methyladenosine (m6A) modification of primary miRNA (pri-miRNA) transcripts has emerged as an important post-transcriptional regulation of miRNA biogenesis. Our previous studies and others have showed that muscle specific miRNAs are essential for skeletal muscle differentiation. Whether these miRNAs are also regulated by METTL3 is still unclear. Here, we found that m6A motifs were present around most of these miRNAs, which were indeed m6A modified as confirmed by m6A-modified RNA immunoprecipitation (m6A RIP). However, we surprisingly found that these muscle specific miRNAs were repressed instead of increased by METTL3 in C2C12 in vitro differentiation and mouse skeletal muscle regeneration after injury in vivo model. To elucidate the underlined mechanism, we performed reporter assays in 293T cells and validated METTL3 increasing these miRNAs at post-transcriptional level as expected. Furthermore, in myogenic C2C12 cells, we found that METTL3 not only repressed the expression of myogenic transcription factors (TFs) which can enhance the muscle specific miRNAs, but also increased the expression of epigenetic regulators which can repress these miRNAs. Thus, METTL3 could repress the muscle specific miRNAs at transcriptional level indirectly. Taken together, our results demonstrated that skeletal muscle specific miRNAs were repressed by METTL3 and such repression is likely synthesized transcriptional and post-transcriptional regulations.


Assuntos
Metiltransferases/genética , MicroRNAs/genética , Músculo Esquelético/metabolismo , Processamento Pós-Transcricional do RNA/genética , Ativação Transcricional/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Células HEK293 , Humanos , Masculino , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
BMC Plant Biol ; 19(1): 195, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088366

RESUMO

BACKGROUND: Flavonol synthase (FLS) is the key enzyme responsible for the biosynthesis of flavonols, the most abundant flavonoids, which have diverse pharmaceutical effects. Flavonol synthase has been previously found in other species, but not yet in Ornithogalum caudatum. RESULTS: The transcriptome-wide mining and functional characterisation of a flavonol synthase gene family from O. caudatum were reported. Specifically, a small FLS gene family harbouring two members, OcFLS1 and OcFLS2, was isolated from O. caudatum based on transcriptome-wide mining. Phylogenetic analysis suggested that the two proteins showed the closest relationship with FLS proteins. In vitro enzymatic assays indicated OcFLS1 and OcFLS2 were flavonol synthases, catalysing the conversion of dihydroflavonols to flavonols in an iron-dependent fashion. In addition, the two proteins were found to display flavanone 3ß-hydroxylase (F3H) activity, hydroxylating flavanones to form dihydroflavonols. Unlike single F3H enzymes, the F3H activity of OcFLS1 and OcFLS2 did not absolutely require iron. However, the presence of sufficient Fe2+ was demonstrated to be conducive to successive catalysis of flavanones to flavonols. The qRT-PCR analysis demonstrated that both genes were expressed in the leaves, bulbs, and flowers, with particularly high expression in the leaves. Moreover, their expression was regulated by developmental and environmental conditions. CONCLUSIONS: OcFLS1 and OcFLS2 from O. caudatum were demonstrated to be flavonol synthases with iron-independent flavanone 3-hydroxylase activity.


Assuntos
Oxigenases de Função Mista/metabolismo , Ornithogalum/enzimologia , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Eletroforese em Gel de Poliacrilamida , Flavonóis/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , Ferro/metabolismo , Redes e Vias Metabólicas , Ornithogalum/genética , Ornithogalum/metabolismo , Análise de Sequência de DNA , Transcriptoma
7.
Molecules ; 21(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834878

RESUMO

d-Galacturonic acid (GalA) is an important component of GalA-containing polysaccharides in Ornithogalum caudatum. The incorporation of GalA into these polysaccharides from UDP-d-galacturonic acid (UDP-GalA) was reasonably known. However, the cDNAs involved in the biosynthesis of UDP-GalA were still unknown. In the present investigation, one candidate UDP-d-glucuronic acid 4-epimerase (UGlcAE) family with three members was isolated from O. caudatum based on RNA-Seq data. Bioinformatics analyses indicated all of the three isoforms, designated as OcUGlcAE1~3, were members of short-chain dehydrogenases/reductases (SDRs) and shared two conserved motifs. The three full-length cDNAs were then transformed to Pichia pastoris GS115 for heterologous expression. Data revealed both the supernatant and microsomal fractions from the recombinant P. pastoris expressing OcUGlcAE3 can interconvert UDP-GalA and UDP-d-glucuronic acid (UDP-GlcA), while the other two OcUGlcAEs had no activity on UDP-GlcA and UDP-GalA. Furthermore, expression analyses of the three epimerases in varied tissues of O. caudatum were performed by real-time quantitative PCR (RT-qPCR). Results indicated OcUGlcAE3, together with the other two OcUGlcAE-like genes, was root-specific, displaying highest expression in roots. OcUGlcAE3 was UDP-d-glucuronic acid 4-epimerase and thus deemed to be involved in the biosynthesis of root polysaccharides. Moreover, OcUGlcAE3 was proposed to be environmentally induced.


Assuntos
Carboidratos Epimerases , DNA Complementar , Ornithogalum , Proteínas de Plantas , Raízes de Plantas , Carboidratos Epimerases/biossíntese , Carboidratos Epimerases/genética , Expressão Gênica , Ornithogalum/enzimologia , Ornithogalum/genética , Pichia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
8.
Mol Biol Rep ; 41(2): 591-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24374893

RESUMO

Insulin-like growth factor 2 (IGF2) is a potent cell growth and differentiation factor and is implicated in mammals' growth and development. The objective of this study was to evaluate the effects of the mutations in the bovine IGF2 with growth traits in Chinese Qinchuan cattle. Four single nucleotide polymorphisms (SNPs) were detected of the bovine IGF2 by DNA pool sequencing and forced polymerase chain reaction-restriction fragment length polymorphism (forced PCR-RFLP) methods. We also investigated haplotype structure and linkage disequilibrium (LD) coefficients for four SNPs in 817 individuals representing two main cattle breeds from China. The result of haplotype analysis showed eight different haplotypes and 27 combined genotypes within the study population. The statistical analyses indicated that the four SNPs, combined genotypes and haplotypes are associated with the withers height, body length, chest breadth, chest depth and body weight in Qinchuan cattle population (P < 0.05 or <0.01). The mutant-type variants and mutant haplotype (Hap 8: ATGG; likely to be the beneficial QTN allele) was superior for growth traits; the heterozygote diplotype was associated with higher growth traits compared to wild-type homozygote. Our results provide evidence that polymorphisms in the IGF2 gene are associated with growth traits, and may be used for marker-assisted selection in beef cattle breeding program.


Assuntos
Peso Corporal/genética , Fator de Crescimento Insulin-Like II/genética , Característica Quantitativa Herdável , Animais , Cruzamento , Bovinos , China , Genótipo , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
9.
Anim Biotechnol ; 25(1): 35-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24299183

RESUMO

Zinc finger, BED-type containing 6 (ZBED6) is a novel transcription factor that was identified and shown to act as a repressor of IGF2 transcription in skeletal muscle myogenesis and development. The aims of this study were to determine ZBED6 expression level and examine the association of the ZBED6 polymorphism with growth traits in Qinchuan beef cattle. The bovine ZBED6 mRNA was detected in eight tissues by quantitative real-time PCR (qPCR), being highly expressed in skeletal muscle. Three single nucleotide polymorphisms (SNPs) were identified the bovine ZBED6 by sequencing pooled DNA samples (Pool-Seq) and forced polymerase chain reaction-restriction fragment length polymorphism (forced PCR-RFLP) methods. In this study, we reported one mutation in the promoter and two missense mutations in the coding regions within the bovine ZBED6 gene, and the haplotype variability and extent of linkage disequilibrium (LD) in 817 individuals from the Qinchuan (QC) and Chinese Holstein (CH). We also investigated haplotype structure and linkage disequilibrium coefficients for three SNPs of ZBED6 in the study populations. The result of haplotype analysis of three SNPs showed that eight different haplotypes were identified in two breeds. The wild-type haplotype (Hap 1: GCA) and mutant-type haplotype (Hap 8: AGG) shared by two populations accounted for 29.8%, 57.5%, and 8.6%, 0% of all haplotypes observed in QC and CH, respectively. The statistical analyses indicated that three SNPs, 23 combined genotypes, and 8 haplotypes were significantly associated with different growth traits in the QC cattle population (P < 0.05 or P < 0.01). The mutant-type variants and mutant haplotype were superior for growth traits; the heterozygote diplotype was associated with higher growth traits compared to the wild-type homozygote. The results of this study suggest that the ZBED6 gene possibly is a strong candidate gene that affects growth traits in QC beef cattle breeding program.


Assuntos
Bovinos/genética , Haplótipos/genética , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/genética , Animais , Simulação por Computador , Especificidade de Órgãos , RNA/química , RNA/isolamento & purificação , Proteínas Repressoras/análise , Proteínas Repressoras/metabolismo
10.
Ying Yong Sheng Tai Xue Bao ; 35(2): 390-398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523096

RESUMO

To explore the coupling of dry-wet seasonal variations of soil respiration with their environmental factors in the alpine meadow under the background of increasing nitrogen (N) deposition, we conducted an experiment in the typical degraded Poa pratensis meadow in the Napahai, Yunnan. There were four treatments, i.e., control (0 g·m-2·a-1), low (5 g·m-2·a-1), medium (10 g·m-2·a-1), and high (15 g·m-2·a-1) levels. We examined the effects of aboveground biomass, plant diversity, and soil physicochemical properties on soil respiration. The results showed that N deposition significantly promoted soil respiration. Compared with that in the control, soil respiration rates increased by 21.9%-53.9% and 27.3%-51.2% in dry and wet seasons, respectively. The maximum value of soil respiration rate was recorded in the medium N treatment. N deposition dramatically elevated aboveground biomass (52.2%-66.4%). Plant diversity declined with increasing N addition levels, with the maximum value (13.5%-24.2%) being recorded in high treatment in wet season. The values of ammonium nitrogen, organic matter, microbial biomass carbon and nitrogen, temperature and moisture in the three N treatments were elevated by 14.3%-333.5% compared with the control, while those of soil pH were decreased by 9.0%-34.6%. Results of the structural equation modelling showed that plant biomass, Shannon diversity, microbial biomass, soil temperature, and moisture showed a positive effect on soil respiration, while bulk density had a negative effect. Soil nitrogen pool and pH were main factors driving soil CO2 emissions, accounting for 55.7% and 45.1% of the variations, respectively. Therefore, short-term atmospheric N deposition stimulated soil respiration primarily via altering soil pH and nitrogen pool components in the degraded alpine meadow.


Assuntos
Ecossistema , Poa , China , Estações do Ano , Pradaria , Solo/química , Nitrogênio/análise , Biomassa , Plantas , Respiração
11.
Genome ; 56(6): 327-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23957672

RESUMO

Muscle growth is a complex phenomenon regulated by many factors, whereby net growth results from the combined action of synthesis and turnover. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation; Zinc finger, BED-type containing 6 (ZBED6) is a novel transcription factor that was identified and shown to act as a repressor of IGF2 transcription in skeletal muscle. In this study, a total of seven single nucleotide polymorphisms (SNPs) were identified, four SNPs in intron 8 of IGF2 and one promoter SNP and two missense mutations in the coding region of ZBED6, two of which were in complete linkage disequilibrium (LD) in the bovine IGF2. The 58 haplotypes were inferred in 1522 individuals representing four purebred cattle breeds from China. The seven SNPs, 79 and 66 combined diplotypes were revealed for association with body mass in Nanyang and Jiaxian cattle populations at five different ages (P < 0.05 or 0.01). The mutant-type variants and haplotype 58 (likely in LD with the beneficial quantitative trait nucleotide allele) was superior for body mass; the heterozygote diplotype of the most common haplotypes 58 was associated with higher body mass compared to either heterozygote or homozygote. The statistical analyses indicated that the mutant-type variants and haplotypes are significantly associated with body mass in study cattle populations at different ages. These data demonstrate that variants and haplotypes are associated with growth traits, and these results may provide important biological insights into the phenotypic differentiation that is associated with adaptation and specialization of cattle breeds.


Assuntos
Bovinos/crescimento & desenvolvimento , Bovinos/genética , Haplótipos/genética , Fator de Crescimento Insulin-Like II/genética , Animais , Peso Corporal/genética , China , Variação Genética , Heterozigoto , Íntrons , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Característica Quantitativa Herdável , Fatores de Transcrição/genética
12.
Anim Genet ; 44(5): 584-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23647079

RESUMO

SIRT1, a mammalian homologue for yeast silent information regulator 2 (SIR2), is a NAD(+) -dependent deacetylase that belongs to the class III histone deacetylases. It plays an important role in diverse cellular processes, including stress resistance, mitochondrial function, suppression of inflammation and DNA repair. In this study, we screened and identified a novel polymorphism (c.-274C>G) in the SIRT1 promoter region. In silico prediction reveals that this SNP is in the core of cell cycle-dependent element (CDE)-binding motif. Interestingly, the G allele abolished a CDE-binding site, which suggested its functional significance. In the luciferase assay system, we found that the G allele-containing construct displayed a strikingly lower promoter activity compared with the C allele, which may downregulate SIRT1 expression levels. Additionally, we observed a significant association between the c.-274C>G polymorphism and growth traits in Nanyang cattle, suggesting that anomalous transcription factor-based repression of SIRT1 may increase bovine fat mass and body size.


Assuntos
Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Sirtuína 1/genética , Animais , Tamanho Corporal , Bovinos
13.
Nat Commun ; 14(1): 88, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604415

RESUMO

Fano resonance which describes a quantum interference between continuum and discrete states, provides a unique method for studying strongly interacting physics. Here, we report a Fano resonance between dark excitons and zone-edged acoustic phonons in few-layer WS2 by using the resonant Raman technique. The discrete phonons with large momentum at the M-point of the Brillouin zone and the continuum dark exciton states related to the optically forbidden transition at K and Q valleys are coupled by the exciton-phonon interactions. We observe rich Fano resonance behaviors across layers and modes defined by an asymmetry-parameter q: including constructive interference with two mirrored asymmetry Fano peaks (weak coupling, q > 1 and q < - 1), and destructive interference with Fano dip (strong coupling, ∣q∣ < < 1). Our results provide new insight into the exciton-phonon quantum interference in two-dimensional semiconductors, where such interferences play a key role in their transport, optical, and thermodynamic properties.

14.
J Phys Chem Lett ; 13(16): 3691-3697, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35439004

RESUMO

The two-dimensional layered semiconductor InSe, with its high carrier mobility, chemical stability, and strong charge transfer ability, plays a crucial role in optoelectronic devices. The number of InSe layers (L) has an important influence on its band structure and optoelectronic properties. Herein we present systematic investigations on few-layer (1L-7L) γ-InSe by optical contrast and Raman spectroscopy. We propose three quantified formulas to quickly identify the layer number using optical contrast, the frequency difference of two A1 modes, and ultralow-frequency Raman spectroscopy, respectively. Moreover, angle-resolved polarization Raman spectra show that γ-InSe is isotropic in the a-b plane. Furthermore, using Raman mapping, we find that the relative strength of the low-frequency interlayer shear modes is particularly sensitive to the interaction between the sample and the substrate.

15.
J Phys Chem Lett ; 13(6): 1533-1539, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35133164

RESUMO

Recently, the coupling between magnons (quanta of spin waves) and phonons (quanta of lattice vibrations) in two-dimensional (2D) antiferromagnet FePS3 offers a myriad of applications ranging from spintronic devices to quantum information technologies. However, the reported magnon-phonon coupling in the FePS3 flake using Raman measurements requires an ultrahigh magnetic field up to 30 T. Here, we investigate the magnon-phonon coupling in FePS3 by near-resonant magneto-Raman spectroscopy under a relatively small magnetic field (|H0| ≤ 9 T). Under near-resonant excitation, we find more pronounced coupling effects that are absent in non-resonant excitation: three optical phonons sensitive to the applied magnetic field are resolved, two of which show a frequency anti-crossing coupling with magnon, while the other coupled phonon exhibits only a polarization-coupled character without frequency anti-crossing. Besides, our polarized Raman results also show the polarization transferring between coupled magnon-phonon modes. On the basis of a modified theoretical model, we can well explain the measured Raman spectra.

16.
Front Cell Dev Biol ; 9: 744171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660602

RESUMO

N6-methyladenosine (m6A) RNA methylation has emerged as an important factor in various biological processes by regulating gene expression. However, the dynamic profile, function and underlying molecular mechanism of m6A modification during skeletal myogenesis remain elusive. Here, we report that members of the m6A core methyltransferase complex, METTL3 and METTL14, are downregulated during skeletal muscle development. Overexpression of either METTL3 or METTL14 dramatically blocks myotubes formation. Correspondingly, knockdown of METTL3 or METTL14 accelerates the differentiation of skeletal muscle cells. Genome-wide transcriptome analysis suggests ERK/MAPK is the downstream signaling pathway that is regulated to the greatest extent by METTL3/METTL14. Indeed, METTL3/METTL14 expression facilitates ERK/MAPK signaling. Via MeRIP-seq, we found that MNK2, a critical regulator of ERK/MAPK signaling, is m6A modified and is a direct target of METTL3/METTL14. We further revealed that YTHDF1 is a potential reader of m6A on MNK2, regulating MNK2 protein levels without affecting mRNA levels. Furthermore, we discovered that METTL3/14-MNK2 axis was up-regulated notably after acute skeletal muscle injury. Collectively, our studies revealed that the m6A writers METTL3/METTL14 and the m6A reader YTHDF1 orchestrate MNK2 expression posttranscriptionally and thus control ERK signaling, which is required for the maintenance of muscle myogenesis and may contribute to regeneration.

17.
Cell Death Discov ; 7(1): 110, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001866

RESUMO

MALAT1-associated small cytoplasmic RNA (mascRNA) is a cytoplasmic tRNA-like small RNA derived from nucleus-located long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). While MALAT1 was extensively studied and was found to function in multiple cellular processes, including tumorigenesis and tumor progression, the role of mascRNA was largely unknown. Here we show that mascRNA is upregulated in multiple cancer cell lines and hepatocellular carcinoma (HCC) clinical samples. Using HCC cells as model, we found that mascRNA and its parent lncRNA MALAT1 can both promote cell proliferation, migration, and invasion in vitro. Correspondingly, both of them can enhance the tumor growth in mice subcutaneous tumor model and can promote metastasis by tail intravenous injection of HCC cells. Furthermore, we revealed that mascRNA and MALAT1 can both activate ERK/MAPK signaling pathway, which regulates metastasis-related genes and may contribute to the aggressive phenotype of HCC cells. Our results indicate a coordination in function and mechanism of mascRNA and MALAT1 during development and progress of HCC, and provide a paradigm for deciphering tRNA-like structures and their parent transcripts in mammalian cells.

19.
Mol Ther Nucleic Acids ; 21: 983-990, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32818922

RESUMO

Subarachnoid hemorrhage (SAH) patients' surgery is performed to prevent extravasation of blood into the subarachnoid space. Cerebral vasospasm (CVS; narrowing of cerebral arteries) occurs following SAH and represents a major cause of associated mortality and morbidity. To improve postsurgery care of SAH patients and their prognosis, the ability to predict CVS onset is critical. We report a long noncoding RNA (lncRNA) signature to distinguish SAH patients with CVS from SAH patients without CVS. Cerebrospinal fluid (CSF) was obtained from SAH patients without CVS (n = 10) and SAH patients with CVS (n = 10). lncRNAs ZFAS1 and MALAT1 were significantly upregulated (p < 0.05), whereas lncRNAs LINC00261 and LINC01619 were significantly downregulated in SAH patients with CVS (p < 0.05) compared to SAH patients without CVS. We applied this lncRNA signature to retrospectively predict CVS in SAH patients (n = 38 for SAH patients without CVS, and n = 27 for SAH patients with CVS). The 4-lncRNA signature was found to be predictive in >40% of samples and the 2-lncRNA comprising MALAT1 and LINC01619 accurately predicted CVS in ∼90% cases. These results are initial steps toward personalized management of SAH patients in clinics and provide novel CSF biomarkers that can substantially improve the clinical management of SAH patients.

20.
J Phys Chem Lett ; 10(11): 3087-3093, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31088058

RESUMO

Ferromagnetic/antiferromagnetic materials are of crucial importance in information storage and spintronics devices. Herein we present a comprehensive study of 2D Heisenberg-like antiferromagnetic material MnPS3 by optical contrast and Raman spectroscopy. We propose a criterion of 0.1 × ( N - 1) < (Δ R/ R)max < 0.1 × N ( N ≤ 7) to quickly identify the layer number N by using maximum optical contrast (Δ R/ R)max of few-layer MnPS3 on a SiO2/Si substrate (90 nm thick SiO2). The Raman modes are also identified by polarization Raman spectroscopy. Furthermore, by temperature-dependent Raman measurements, we obtain three phase transition temperatures of MnPS3. The transition temperature at around 80 K corresponds to the transition from the antiferromagnetic to paramagnetic phase; the one at around 120 K is related to its second magnetic phase transition temperature due to two-dimensional spin critical fluctuations; the one at around 55 K is associated with unbinding of spin vortices. Our studies provide more evidence to advance knowledge of the magnetic critical dynamics of 2D ferromagnetic/antiferromagnetic systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa