Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Genomics ; 116(4): 110848, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663523

RESUMO

Fiber quality is a major breeding goal in cotton, but phenotypically direct selection is often hindered. In this study, we identified fiber quality and yield related loci using GWAS based on 2.97 million SNPs obtained from 10.65× resequencing data of 1081 accessions. The results showed that 585 novel fiber loci, including two novel stable SNP peaks associated with fiber length on chromosomes At12 and Dt05 and one novel genome regions linked with fiber strength on chromosome Dt12 were identified. Furthermore, by means of gene expression analysis, GhM_A12G0090, GhM_D05G1692, GhM_D12G3135 were identified and GhM_D11G2208 function was identified in Arabidopsis. Additionally, 14 consistent and stable superior haplotypes were identified, and 25 accessions were detected as possessing these 14 superior haplotype in breeding. This study providing fundamental insight relevant to identification of genes associated with fiber quality and yield will enhance future efforts toward improvement of upland cotton.


Assuntos
Gossypium , Haplótipos , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Gossypium/genética , Genoma de Planta , Fibra de Algodão , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas
2.
Theor Appl Genet ; 136(8): 171, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420143

RESUMO

KEY MESSAGE: A. gossypii resistance showed great variability in G. hirsutum varieties. One hundred and seventy-six SNPs associated with A. gossypii resistance were identified using GWAS. Four candidate resistance genes were functionally validated. Aphis gossypii is an economically important sap-feeding pest and is widely distributed in the world's cotton-producing regions. Identification of cotton genotypes and developing cultivars with improved A. gossypii resistance (AGR) is essential and desirable for sustainable agriculture. In the present study, A. gossypii was offered no choice but to propagate on 200 Gossypium hirsutum accessions. A relative aphid reproduction index (RARI) was used to evaluate the AGR, which showed large variability in cotton accessions and was classified into 6 grades. A significantly positive correlation was found between AGR and Verticillium wilt resistance. A total of 176 SNPs significantly associated with the RARI were identified using GWAS. Of these, 21 SNPs could be repeatedly detected in three replicates. Cleaved amplified polymorphic sequence, a restriction digestion-based genotyping assay, was developed using SNP1 with the highest observed -log10(P-value). Four genes within the 650 kb region of SNP1 were further identified, including GhRem (remorin-like), GhLAF1 (long after far-red light 1), GhCFIm25 (pre-mRNA cleavage factor Im 25 kDa subunit) and GhPMEI (plant invertase/pectin methylesterase inhibitor superfamily protein). The aphid infection could induce their expression and showed a significant difference between resistant and susceptible cotton varieties. Silencing of GhRem, GhLAF1 or GhCFIm25 could significantly increase aphid reproduction on cotton seedlings. Silencing of GhRem significantly reduced callose deposition, which is reasonably believed to be the cause for the higher AGR. Our results provide insights into understanding the genetic regulation of AGR in cotton and suggest candidate germplasms, SNPs and genes for developing cultivars with improved AGR.


Assuntos
Afídeos , Estudo de Associação Genômica Ampla , Animais , Gossypium/fisiologia , Polimorfismo de Nucleotídeo Único , Genótipo
3.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175999

RESUMO

Comparative transcriptome analysis of fiber tissues between Gossypium barbadense and Gossypium hirsutum could reveal the molecular mechanisms underlying high-quality fiber formation and identify candidate genes for fiber quality improvement. In this study, 759 genes were found to be strongly upregulated at the elongation stage in G. barbadense, which showed four distinct expression patterns (I-IV). Among them, the 346 genes of group IV stood out in terms of the potential to promote fiber elongation, in which we finally identified 42 elongation-related candidate genes by comparative transcriptome analysis between G. barbadense and G. hirsutum. Subsequently, we overexpressed GbAAR3 and GbTWS1, two of the 42 candidate genes, in Arabidopsis plants and validated their roles in promoting cell elongation. At the secondary cell wall (SCW) biosynthesis stage, 2275 genes were upregulated and exhibited five different expression profiles (I-V) in G. barbadense. We highlighted the critical roles of the 647 genes of group IV in SCW biosynthesis and further picked out 48 SCW biosynthesis-related candidate genes by comparative transcriptome analysis. SNP molecular markers were then successfully developed to distinguish the SCW biosynthesis-related candidate genes from their G. hirsutum orthologs, and the genotyping and phenotyping of a BC3F5 population proved their potential in improving fiber strength and micronaire. Our results contribute to the better understanding of the fiber quality differences between G. barbadense and G. hirsutum and provide novel alternative genes for fiber quality improvement.


Assuntos
Gossypium , Transcriptoma , Gossypium/genética , Gossypium/metabolismo , Fibra de Algodão , Expressão Ectópica do Gene , Melhoria de Qualidade , Regulação da Expressão Gênica de Plantas
4.
Plant J ; 107(3): 831-846, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008265

RESUMO

Cotton (Gossypium hirsutum) is constantly attacked by pathogens and insects. The most efficient control strategy is to develop resistant varieties using broad-spectrum gene resources. Several resistance loci harboured by superior varieties have been identified through genome-wide association studies. However, the key genes and/or loci have not been functionally identified. In this study, we identified a locus significantly associated with Verticillium wilt (VW) resistance, and within a 145.5-kb linkage disequilibrium, two non-specific lipid transfer protein genes (named GhnsLTPsA10) were highly expressed under Verticillium pathogen stress. The expression of GhnsLTPsA10 significantly increased in roots upon Verticillium dahliae stress but significantly decreased in leaves under insect attack. Furthermore, GhnsLTPsA10 played antagonistic roles in positively regulating VW and Fusarium wilt resistance and negatively mediating aphid and bollworm resistance in transgenic Arabidopsis and silenced cotton. By combining transcriptomic, histological and physiological analyses, we determined that GhnsLTPsA10-mediated phenylpropanoid metabolism further affected the balance of the downstream metabolic flux of flavonoid and lignin biosynthesis. The divergent expression of GhnsLTPsA10 in roots and leaves coordinated resistance of cotton against fungal pathogens and insects via the redirection of metabolic flux. In addition, GhnsLTPsA10 contributed to reactive oxygen species accumulation. Therefore, in this study, we elucidated the novel function of GhnsLTP and the molecular association between disease resistance and insect resistance, balanced by GhnsLTPsA10. This broadens our knowledge of the biological function of GhnsLTPsA10 in crops and provides a useful locus for genetic improvement of cotton.


Assuntos
Proteínas de Transporte/metabolismo , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte/genética , Metabolismo Energético/genética , Estudo de Associação Genômica Ampla , Gossypium/genética , Herbivoria , Insetos , Larva , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Verticillium/fisiologia
5.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35328334

RESUMO

Verticillium wilt (VW), a fungal disease caused by Verticillium dahliae, currently devastates cotton fiber yield and quality seriously, yet few resistance germplasm resources have been discovered in Gossypium hirsutum. The cotton variety Nongda601 with suitable VW resistance and high yield was developed in our lab, which supplied elite resources for discovering resistant genes. Early nodulin-like protein (ENODL) is mainly related to nodule formation, and its role in regulating defense response has been seldom studied. Here, 41 conserved ENODLs in G. hirsutum were identified and characterized, which could divide into four subgroups. We found that GhENODL6 was upregulated under V. dahliae stress and hormonal signal and displayed higher transcript levels in resistant cottons than the susceptible. The GhENODL6 was proved to positively regulate VW resistance via overexpression and gene silencing experiments. Overexpression of GhENODL6 significantly enhanced the expressions of salicylic acid (SA) hormone-related transcription factors and pathogenicity-related (PR) protein genes, as well as hydrogen peroxide (H2O2) and SA contents, resulting in improved VW resistance in transgenic Arabidopsis. Correspondingly, in the GhENODL6 silenced cotton, the expression levels of both phenylalanine ammonia lyase (PAL) and 4-coumarate-CoA ligase (4CL) genes significantly decreased, leading to the reduced SA content mediating by the phenylalanine ammonia lyase pathway. Taken together, GhENODL6 played a crucial role in VW resistance by inducing SA signaling pathway and regulating the production of reactive oxygen species (ROS). These findings broaden our understanding of the biological roles of GhENODL and the molecular mechanisms underlying cotton disease resistance.


Assuntos
Arabidopsis , Verticillium , Arabidopsis/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Peróxido de Hidrogênio/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Verticillium/fisiologia
6.
BMC Plant Biol ; 21(1): 89, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568051

RESUMO

BACKGROUND: Dirigent (DIR) proteins mediate regioselectivity and stereoselectivity during lignan biosynthesis and are also involved in lignin, gossypol and pterocarpan biosynthesis. This gene family plays a vital role in enhancing stress resistance and in secondary cell-wall development, but systematical understanding is lacking in cotton. RESULTS: In this study, 107 GbDIRs and 107 GhDIRs were identified in Gossypium barbadense and Gossypium hirsutum, respectively. Most of these genes have a classical gene structure without intron and encode proteins containing a signal peptide. Phylogenetic analysis showed that cotton DIR genes were classified into four distinct subfamilies (a, b/d, e, and f). Of these groups, DIR-a and DIR-e were evolutionarily conserved, and segmental and tandem duplications contributed equally to their formation. In contrast, DIR-b/d mainly expanded by recent tandem duplications, accompanying with a number of gene clusters. With the rapid evolution, DIR-b/d-III was a Gossypium-specific clade involved in atropselective synthesis of gossypol. RNA-seq data highlighted GhDIRs in response to Verticillium dahliae infection and suggested that DIR gene family could confer Verticillium wilt resistance. We also identified candidate DIR genes related to fiber development in G. barbadense and G. hirsutum and revealed their differential expression. To further determine the involvement of DIR genes in fiber development, we overexpressed a fiber length-related gene GbDIR78 in Arabidopsis and validated its function in trichomes and hypocotyls. CONCLUSIONS: These findings contribute novel insights towards the evolution of DIR gene family and provide valuable information for further understanding the roles of DIR genes in cotton fiber development as well as in stress responses.


Assuntos
Produtos Agrícolas/genética , Evolução Molecular , Genes de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Tetraploidia , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Filogenia
7.
Plant Biotechnol J ; 19(10): 2126-2138, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34160879

RESUMO

Verticillium wilt (VW) is a destructive disease that results in great losses in cotton yield and quality. Identifying genetic variation that enhances crop disease resistance is a primary objective in plant breeding. Here we reported a GWAS of cotton VW resistance in a natural-variation population, challenged by different pathogenicity stains and different environments, and found 382 SNPs significantly associated with VW resistance. The associated signal repeatedly peaked in chromosome Dt11 (68 798 494-69 212 808) containing 13 core elite alleles undescribed previously. The core SNPs can make the disease reaction type from susceptible to tolerant or resistant in accessions with alternate genotype compared to reference genotype. Of the genes associated with the Dt11 signal, 25 genes differentially expressed upon Verticillium dahliae stress, with 21 genes verified in VW resistance via gene knockdown and/or overexpression experiments. We firstly discovered that a gene cluster of L-type lectin-domain containing receptor kinase (GhLecRKs-V.9) played an important role in VW resistance. These results proved that the associated Dt11 region was a major genetic locus responsible for VW resistance. The frequency of the core elite alleles (FEA) in modern varieties was significantly higher than the early/middle varieties (12.55% vs 4.29%), indicating that the FEA increased during artificial selection breeding. The current developmental resistant cultivars, JND23 and JND24, had fixed these core elite alleles during breeding without yield penalty. These findings unprecedentedly provided genomic variations and promising alleles for promoting cotton VW resistance improvement.


Assuntos
Verticillium , Ascomicetos , Cromossomos , Resistência à Doença/genética , Genômica , Gossypium/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas
8.
Theor Appl Genet ; 134(8): 2399-2410, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33928409

RESUMO

KEY MESSAGE: A stable QTL qSalt-A04-1 for salt tolerance in the cotton seed germination stage, and two candidate genes, GhGASA1 and GhADC2, that play negative roles by modulating the GA and PA signalling pathways, respectively, were identified. The successful transition of a seed into a seedling is a prerequisite for plant propagation and crop yield. Germination is a vulnerable stage in a plant's life cycle that is strongly affected by environmental conditions, such as salinity. In this study, we identified a novel quantitative trait locus (QTL) qRGR-A04-1 associated with the relative germination rate (RGR) after salt stress treatment based on a high-density genetic map under phytotron and field conditions, with LOD values that ranged from 6.65 to 16.83 and 6.11-12.63% phenotypic variations in all five environmental tests. Two candidate genes with significantly differential expression between the two parents were finally identified through RNA-seq and qRT-PCR analyses. Further functional analyses showed that GhGASA1- and GhADC2-overexpression lines were more sensitive to salt stress than wild-type Arabidopsis based on the regulation of the transcript levels of gibberellic acid (GA)- and polyamine (PA)- related genes in GA and PA biosynthesis and the reduction in the accumulation of GA and PA, respectively, under salt stress. Virus-induced gene silencing analysis showed that TRV:GASA1 and TRV:ADC2 were more tolerant to salt stress than TRV:00 based on the increased expression of GA synthesis genes and decreased H2O2 content, respectively. Taken together, our results suggested that QTL qRGR-A04-1 and its two harboured genes, GhGASA1 and GhADC2, are promising candidates for salt tolerance improvement in cotton.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Tolerância ao Sal , Perfilação da Expressão Gênica , Germinação , Gossypium/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
9.
Theor Appl Genet ; 133(12): 3395-3408, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32894321

RESUMO

KEY MESSAGE: A high-density linkage map of an intraspecific RIL population was constructed using 6187 bins to identify QTLs for fibre quality- and yield-related traits in upland cotton by whole-genome resequencing. Good fibre quality and high yield are important production goals in cotton (Gossypium hirsutum L.), which is a leading natural fibre crop worldwide. However, a greater understanding of the genetic variants underlying fibre quality- and yield-related traits is still required. In this study, a large-scale population including 588 F7 recombinant inbred lines, derived from an intraspecific cross between the upland cotton cv. Nongdamian13, which exhibits high quality, and Nongda601, which exhibits a high yield, was genotyped by using 232,946 polymorphic single-nucleotide polymorphisms obtained via a whole-genome resequencing strategy with 4.3-fold genome coverage. We constructed a high-density bin linkage map containing 6187 bin markers spanning 4478.98 cM with an average distance of 0.72 cM. We identified 58 individual quantitative trait loci (QTLs) and 25 QTL clusters harbouring 94 QTLs, and 119 previously undescribed QTLs controlling 13 fibre quality and yield traits across eight environments. Importantly, the QTL counts for fibre quality in the Dt subgenome were more than two times that in the At subgenome, and chromosome D02 harboured the greatest number of QTLs and clusters. Furthermore, we discovered 24 stable QTLs for fibre quality and 12 stable QTLs for yield traits. Four novel major stable QTLs related to fibre length, fibre strength and lint percentage, and seven previously unreported candidate genes with significantly differential expression between the two parents were identified and validated by RNA-seq. Our research provides valuable information for improving the fibre quality and yield in cotton breeding.


Assuntos
Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Gossypium/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ligação Genética , Genoma de Planta , Genótipo , Gossypium/crescimento & desenvolvimento , Fenótipo , Melhoramento Vegetal , RNA-Seq
11.
Biochem Biophys Res Commun ; 495(1): 1363-1369, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986253

RESUMO

microRNAs (miRNAs) play critical roles in cancer development and progression. This study investigated the effects of miR-19 in human osteosarcoma (OS) development. Here, we showed that miR-19 was frequently upregulated in OS tissues and cell lines. Moreover the expression of miR-19 was associated with TNM stage, metastasis, size and poor overall survival. Mechanistically, miR-19 dramatically suppressed OS growth in vitro and in vivo. Bioinformatics analyses predicted that SOCS6 is a potential target gene of miR-19 in OS, which was confirmed by luciferase-reporter assay. We also found that SOCS6 expression was downregulated and negatively correlated with miR-19 expression in OS tissues clinically. Moreover, ectopic SOCS6 could reverse miR-19 induced OS growth. Finally, JAK2/STAT3 signaling pathway involves miR-19/SOCS6-mediated OS progression. Together, our data provide important evidence for miR-19 mediated SOCS6 in OS growth and revealed miR-19/SOCS6/JAK2/STAT3 pathway as a potential therapeutic strategy for OS patients.


Assuntos
Proliferação de Células , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica/patologia , Regulação para Cima
12.
Theor Appl Genet ; 131(11): 2413-2425, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30132023

RESUMO

KEY MESSAGE: A total of 62 SNPs associated with yield-related traits were identified by a GWAS. Based on significant SNPs, two candidate genes pleiotropically increase lint yield. Improved fibre yield is considered a constant goal of upland cotton (Gossypium hirsutum) breeding worldwide, but the understanding of the genetic basis controlling yield-related traits remains limited. To better decipher the molecular mechanism underlying these traits, we conducted a genome-wide association study to determine candidate loci associated with six yield-related traits in a population of 719 upland cotton germplasm accessions; to accomplish this, we used 10,511 single-nucleotide polymorphisms (SNPs) genotyped by an Illumina CottonSNP63K array. Six traits, including the boll number, boll weight, lint percentage, fruit branch number, seed index and lint index, were assessed in multiple environments; large variation in all phenotypes was detected across accessions. We identified 62 SNP loci that were significantly associated with different traits on chromosomes A07, D03, D05, D09, D10 and D12. A total of 689 candidate genes were screened, and 27 of them contained at least one significant SNP. Furthermore, two genes (Gh_D03G1064 and Gh_D12G2354) that pleiotropically increase lint yield were identified. These identified SNPs and candidate genes provide important insights into the genetic control underlying high yields in G. hirsutum, ultimately facilitating breeding programmes of high-yielding cotton.


Assuntos
Genes de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Polimorfismo de Nucleotídeo Único , Estudos de Associação Genética , Genótipo , Fenótipo , Melhoramento Vegetal
13.
Plant Biotechnol J ; 15(8): 982-996, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28064470

RESUMO

Genetic improvement of fibre quality is one of the main breeding goals for the upland cotton, Gossypium hirsutum, but there are difficulties with precise selection of traits. Therefore, it is important to improve the understanding of the genetic basis of phenotypic variation. In this study, we conducted phenotyping and genetic variation analyses of 719 diverse accessions of upland cotton based on multiple environment tests and a recently developed Cotton 63K Illumina Infinium SNP array and performed a genome-wide association study (GWAS) of fibre quality traits. A total of 10 511 polymorphic SNPs distributed in 26 chromosomes were screened across the cotton germplasms, and forty-six significant SNPs associated with five fibre quality traits were detected. These significant SNPs were scattered over 15 chromosomes and were involved in 612 unique candidate genes, many related to polysaccharide biosynthesis, signal transduction and protein translocation. Two major haplotypes for fibre length and strength were identified on chromosomes Dt11 and At07. Furthermore, by combining GWAS and transcriptome analysis, we identified 163 and 120 fibre developmental genes related to length and strength, respectively, of which a number of novel genes and 19 promising genes were screened. These results provide new insight into the genetic basis of fibre quality in G. hirsutum and provide candidate SNPs and genes to accelerate the improvement of upland cotton.


Assuntos
Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Gossypium/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
14.
World J Surg Oncol ; 15(1): 75, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388903

RESUMO

BACKGROUND: There existed controversies about the association between the response to chemotherapy for osteosarcoma (OS) patients and the genetic polymorphisms in excision repair cross-complementation group (ERCC1 and ERCC2) genes. We aimed to perform a meta-analysis to comprehensively evaluate the association. METHOD: We searched multiple databases for literature retrieval including the PubMED (1966 ∼ 2017), Embase (1980 ∼ 2017), and the Web of science (1945 ∼ 2017). The overall odds ratios(OR) and their corresponding 95% confidence interval (CI) were calculated for the three polymorphisms under the dominant, recessive, and allelic models. RESULTS: From six eligible articles in our study, we found that for ERCC1 rs11615 polymorphism, a significant association was detected between the chemotherapy response and the polymorphism under all three models (dominant model: OR = 2.015, P = 0.005; recessive model: OR = 1.791, P = 0.003; allelic model: OR = 1.677, P = 0.003), and OS patients carrying C allele in rs11615 polymorphism were more likely to response to chemotherapy. In terms of ERCC2 rs1799793 polymorphism, this polymorphism was significantly associated with the response to chemotherapy for OS patients under recessive model (OR = 1.337, P = 0.036), and patients with AG + AA genotype in rs1799793 polymorphism were more appropriate to receive chemotherapy. With respect to ERCC2 rs13181 polymorphism, this polymorphism was not correlated with the response to chemotherapy for OS patients under all three models. CONCLUSIONS: Our meta-analysis suggested that among Chinese population, the rs11615 and rs1799793 polymorphisms were significantly correlated with the response to chemotherapy for patients with OS, and patients with CC or TC + CC genotypes in ERCC1 rs11615 polymorphism or AG + AA genotype in ERCC2 rs1799793 polymorphism were more suitable for chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Osteossarcoma/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/epidemiologia , Neoplasias Ósseas/patologia , China/epidemiologia , Humanos , Estadiamento de Neoplasias , Osteossarcoma/tratamento farmacológico , Osteossarcoma/epidemiologia , Osteossarcoma/patologia , Prognóstico , Taxa de Sobrevida
15.
Mol Cell Biochem ; 397(1-2): 277-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25156120

RESUMO

Accumulating data have shown that microRNAs are involved in the pathogenesis of cancer. miR-202 has been confirmed to be downregulated in several types of human cancer. However, the expression and biological role of miR-202 in osteosarcoma (OS) carcinogenesis and progression remain unclear. In this study, we demonstrated that miR-202 expression is significantly decreased in human OS cell lines and specimens. Restoration of miR-202 expression could inhibit OS cell proliferation, induce cell apoptosis, and suppress tumor growth in nude mice models. We subsequently identified the transcription factor Gli2 as a direct target of miR-202. Overexpression of Gli2 blocked the inhibitory function of miR-202. Taken together, our results indicate that miR-202 acts as a novel tumor suppressor to regulate OS cell proliferation and apoptosis through downregulating Gli2 expression.


Assuntos
Apoptose , Neoplasias Ósseas/metabolismo , Proliferação de Células , Fatores de Transcrição Kruppel-Like/biossíntese , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , Proteínas Nucleares/biossíntese , Osteossarcoma/metabolismo , RNA Neoplásico/biossíntese , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Proteínas Nucleares/genética , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Neoplásico/genética , Proteína Gli2 com Dedos de Zinco
16.
Plants (Basel) ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999670

RESUMO

Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted genome-wide identification and analyzed the AL protein family in Gossypium hirsutum cv. NDM8 to assess their response to various abiotic stresses for the first time. A total of 26 AL genes were identified in NDM8 and classified into four groups based on a phylogenetic tree. Moreover, cis-acting element analysis revealed that multiple phytohormone response and abiotic stress response elements were highly prevalent in AL gene promoters. Further, we discovered that the GhAL19 gene could negatively regulate drought and salt stresses via physiological and biochemical changes, gene expression, and the VIGS assay. The study found there was a significant increase in POD and SOD activity, as well as a significant change in MDA in VIGS-NaCl and VIGS-PEG plants. Transcriptome analysis demonstrated that the expression levels of the ABA biosynthesis gene (GhNCED1), signaling genes (GhABI1, GhABI2, and GhABI5), responsive genes (GhCOR47, GhRD22, and GhERFs), and the stress-related marker gene GhLEA14 were regulated in VIGS lines under drought and NaCl treatment. In summary, GhAL19 as an AL TF may negatively regulate tolerance to drought and salt by regulating the antioxidant capacity and ABA-mediated pathway.

17.
Nat Genet ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251789

RESUMO

Soybean provides protein, oil and multiple health-related compounds. Understanding the effects of structural variations (SVs) on economic traits in modern breeding is important for soybean improvement. Here we assembled the high-quality genome of modern cultivar Nongdadou2 (NDD2) and identified 25,814 SV-gene pairs compared to 29 reported genomes, with 13 NDD2-private SVs validated in 547 deep-resequencing (average = 18.05-fold) accessions, which advances our understanding of genomic variation biology. We found some insertions/deletions involved in seed protein and weight formation, an inversion related to adaptation to drought and a large intertranslocation implicated in a key divergence event in soybean. Of 749,714 SVs from 547 accessions, 6,013 were significantly associated with 22 yield-related and seed-quality-related traits determined in ten location × year environments. We uncovered 1,761 associated SVs that hit genes or regulatory regions, with 12 in GmMQT influencing oil and isoflavone contents. Our work provides resources and insights into SV roles in soybean improvement.

18.
Redox Biol ; 64: 102778, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321061

RESUMO

Cardiovascular diseases caused by atherosclerosis (AS) seriously endanger human health, which is closely related to vascular smooth muscle cell (VSMC) phenotypes. VSMC phenotypic transformation is marked by the alteration of phenotypic marker expression and cellular behaviour. Intriguingly, the mitochondrial metabolism and dynamics altered during VSMC phenotypic transformation. Firstly, this review combs VSMC mitochondrial metabolism in three aspects: mitochondrial ROS generation, mutated mitochondrial DNA (mtDNA) and calcium metabolism respectively. Secondly, we summarized the role of mitochondrial dynamics in regulating VSMC phenotypes. We further emphasized the association between mitochondria and cytoskelton via presenting cytoskeletal support during mitochondrial dynamics process, and discussed its impact on their respective dynamics. Finally, considering that both mitochondria and cytoskeleton are mechano-sensitive organelles, we demonstrated their direct and indirect interaction under extracellular mechanical stimuli through several mechano-sensitive signaling pathways. We additionally discussed related researches in other cell types in order to inspire deeper thinking and reasonable speculation of potential regulatory mechanism in VSMC phenotypic transformation.


Assuntos
Doenças Cardiovasculares , Músculo Liso Vascular , Humanos , Músculo Liso Vascular/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Citoesqueleto/metabolismo , Mitocôndrias/genética , Fenótipo , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Proliferação de Células
19.
Plants (Basel) ; 12(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37836107

RESUMO

Weeds seriously affect the yield and quality of crops. Because manual weeding is time-consuming and laborious, the use of herbicides becomes an effective way to solve the harm caused by weeds in fields. Both 5-enolpyruvyl shikimate-3-phosphate synthetase (EPSPS) and acetyltransferase genes (bialaphos resistance, BAR) are widely used to improve crop resistance to herbicides. However, cotton, as the most important natural fiber crop, is not tolerant to herbicides in China, and the EPSPS and BAR family genes have not yet been characterized in cotton. Therefore, we explore the genes of these two families to provide candidate genes for the study of herbicide resistance mechanisms. In this study, 8, 8, 4, and 5 EPSPS genes and 6, 6, 5, and 5 BAR genes were identified in allotetraploid Gossypium hirsutum and Gossypium barbadense, diploid Gossypium arboreum and Gossypium raimondii, respectively. Members of the EPSPS and BAR families were classified into three subgroups based on the distribution of phylogenetic trees, conserved motifs, and gene structures. In addition, the promoter sequences of EPSPS and BAR family members included growth and development, stress, and hormone-related cis-elements. Based on the expression analysis, the family members showed tissue-specific expression and differed significantly in response to abiotic stresses. Finally, qRT-PCR analysis revealed that the expression levels of GhEPSPS3, GhEPSPS4, and GhBAR1 were significantly upregulated after exogenous spraying of herbicides. Overall, we characterized the EPSPS and BAR gene families of cotton at the genome-wide level, which will provide a basis for further studying the functions of EPSPS and BAR genes during growth and development and herbicide stress.

20.
Bioeng Transl Med ; 8(1): e10375, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684109

RESUMO

Cervical cancer metastasis is an important cause of death in cervical cancer. Previous studies have shown that epithelial-mesenchymal transition (EMT) of tumors promotes its invasive and metastatic capacity. Alterations in the extracellular matrix (ECM) and mechanical signaling are closely associated with cancer cell metastasis. However, it is unclear how matrix stiffness as an independent cue triggers EMT and promotes cervical cancer metastasis. Using collagen-coated polyacrylamide hydrogel models and animal models, we investigated the effect of matrix stiffness on EMT and metastasis in cervical cancer. Our data showed that high matrix stiffness promotes EMT and migration of cervical cancer hela cell lines in vitro and in vivo. Notably, we found that matrix stiffness regulates yes-associated protein (YAP) activity via PPIase non-mitotic a-interaction 1 (Pin1) with a non-Hippo mechanism. These data indicate that matrix stiffness of the tumor microenvironment positively regulates EMT in cervical cancer through the Pin1/YAP pathway, and this study deepens our understanding of cervical cancer biomechanics and may provide new ideas for the treatment of cervical cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa