Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell ; 184(24): 5869-5885.e25, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34758294

RESUMO

RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.


Assuntos
Inibidores da Angiogênese/metabolismo , Encéfalo/metabolismo , Neurogênese , Neurônios/metabolismo , Proteínas Nogo/metabolismo , Receptores Nogo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipocinas/metabolismo , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Adesão Celular , Moléculas de Adesão Celular Neuronais/metabolismo , Complemento C1q/metabolismo , Dendritos/metabolismo , Glicosilação , Células HEK293 , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Ligantes , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Deleção de Sequência , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
3.
Phys Chem Chem Phys ; 26(21): 15705-15716, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38766741

RESUMO

The electrochemical NH3 synthesis on TiNO is proposed to follow the Mars-van Krevelen (MvK) mechanism, offering more favorable N2 adsorption and activation on the N vacancy (Nv) site, compared to the conventional associative mechanism. The regeneration cycle of Nv represents the rate-determining step in this process. This study investigates a series of TM (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt)-TiNO to explore the *H migration (from TM to TiNO)-promoted Nv cycle. The screening results indicate that Ni-TiNO exhibits strong H2O decomposition for *H production with 0.242 eV and low *H migration resistance with 0.913 eV. Notably, *H migration from Ni to TiNO significantly reduces the Nv formation energy to 0.811 eV, compared to 1.387 eV on pure TiNO. Meanwhile, in the presence of *H, Nv formation takes precedence over Tiv and Ov. Lastly, electronic performance calculations reveal that the collaborative function provided by Ni and Nv enables highly stable and efficient NH3 synthesis. The *H migration-assisted MvK mechanism demonstrates effective catalytic cycle performance in electrochemical N2 fixation and may have potential applicability to other hydrogenation reactions utilizing water as a proton source.

4.
Phys Chem Chem Phys ; 26(8): 7166-7176, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349087

RESUMO

The Volmer step in alkaline hydrogen evolution reactions (HERs), which supplies H* to the following steps by cleaving H-O-H bonds, is considered the rate-determining step of the overall reaction. The Volmer step involves water dissociation and adsorbed hydroxyl (*OH) desorption; Ru-based catalysts display a compelling water dissociation process in an alkaline HER. Unfortunately, the strong affinity of Ru for *OH blocks the active sites, resulting in unsatisfactory performance during HER processes. Hence, this study investigates a series of key descriptors (ΔG*H2O, ΔG*H-OH, ΔG*H, and ΔG*OH) of TM (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, or Pt)-Ru/Mo2Ti2C3O2 to systematically explore the effects of bimetallic site interactions on the kinetics of the Volmer step. The results indicate that bimetallic catalysts effectively reduced the strong adsorption of *OH on Ru sites; especially, the NiRu diatomic state shows the highest electron-donating ability, which promoted the smooth migration of *OH from Ru sites to Ni sites. Therefore, Ru, Ni and MXenes are suitable to serve as water adsorption and dissociation sites, *OH desorption sites, and H2 release sites, respectively. Ultimately, NiRu/Mo2Ti2C3O2 promotes Volmer kinetics and has the potential to improve alkaline HERs. This work provides theoretical support for the construction of synergistic MXene-based diatomic catalysts and their wide application in the field of alkaline HERs.

5.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338426

RESUMO

Bismuth vanadate (BVO) is regarded as an exceptional photoanode material for photoelectrochemical (PEC) water splitting, but it is restricted by the severe photocorrosion and slow water oxidation kinetics. Herein, a synergistic strategy combined with a Co3(HPO4)2(OH)2 (CoPH) cocatalyst and an Al2O3 (ALO) passivation layer was proposed for enhanced PEC performance. The CoPH/ALO/BVO photoanode exhibits an impressive photocurrent density of 4.9 mA cm-2 at 1.23 VRHE and an applied bias photon-to-current efficiency (ABPE) of 1.47% at 0.76 VRHE. This outstanding PEC performance can be ascribed to the suppressed surface charge recombination, facilitated interfacial charge transfer, and accelerated water oxidation kinetics with the introduction of the CoPH cocatalyst and ALO passivation layer. This work provides a novel and synergistic approach to design an efficient and stable photoanode for PEC applications by combining an oxygen evolution cocatalyst and a passivation layer.

6.
Small ; 19(24): e2300717, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919813

RESUMO

Regulating electronic structures of the active site by manipulating the local coordination is one of the advantageous means to improve photocatalytic hydrogen evolution (PHE) kinetics. Herein, the ZnIn2 S4 /Mo2 TiC2 Schottky junctions are designed to be constructed through the interfacial local coordination of In3+ with the electronegative O terminal group on Mo2 TiC2 based on the different work functions. Kelvin probe force microscopy and charge density difference reveal that an electronic unidirectional transport channel across the Schottky interface from ZnIn2 S4 to Mo2 TiC2 is established by the formed local nucleophilic/electrophilic region. The increased local electron density of Mo2 TiC2 inhibits the backflow of electrons, boosts the charge transfer and separation, and optimizes the hydrogen adsorption energy. Therefore, the ZnIn2 S4 /Mo2 TiC2 photocatalyst exhibits a superior PHE rate of 3.12 mmol g-1 h-1 under visible light, reaching 3.03 times that of the pristine ZnIn2 S4 . This work provides some insights and inspiration for preparing MXene-based Schottky catalysts to accelerate PHE kinetics.

7.
Opt Express ; 31(25): 41292-41300, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087531

RESUMO

What we believe to be a novel integrated circular polarization dynamic converter (CPDC) is proposed based on the four-layer mirror symmetry structure. By designing the twisted structure and rearranging the orientation direction of liquid crystal molecules for each layer, the application wavelength range could be broadened. For the viewing angle expansion, negative birefringent films are selected to compensate for the retardation deviation under oblique incidence. Finally, the particle swarm algorithm is used to optimize the whole configuration, and the polarization conversion efficiency calculated by the finite element method (FEM) can achieve 90% in the wavelength range from 320 nm to 800 nm at an ultrawide view of 160°. Compared with traditionally active liquid crystal waveplates, the design has potential advantages in both wavelength and field of view (FOV) and provides the possibility for the integrated and flimsy fabrication of devices.

8.
Anticancer Drugs ; 34(7): 844-851, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563023

RESUMO

Tumor-infiltrating lymphocytes (TILs) have been extensively explored as prognostic biomarkers and cellular immunotherapy methods in cancer patients. However, the prognostic significance of TILs in bladder cancer remains unresolved. We evaluated the prognostic effect of TILs in bladder cancer patients. Sixty-four bladder cancer patients who underwent surgical resection between 2018 and 2020 in Zhejiang Provincial People's Hospital were analyzed in this study. Immunohistochemistry was used to evaluate CD3, CD4, CD8, and FoxP3 expression on TILs in the invasive margin of tumor tissue, and the presence of TIL subsets was correlated with the disease-free survival (DFS) of bladder cancer patients. The relationship between clinical-pathological features and DFS were analyzed. A high level of CD3 + TILs (CD3 high TILs) ( P = 0.027) or negative expression of FoxP3 TILs (FoxP3 - TILs) ( P = 0.016) was significantly related to better DFS in bladder cancer patients. Those with CD3 high FoxP3 - TILs had the best prognosis compared to those with CD3 high FoxP3 + TILs or CD3 low FoxP3 - TILs ( P = 0.0035). Advanced age [HR 4.57, (1.86-11.25); P = 0.001], CD3 low TILs [HR 0.21, (0.06-0.71); P = 0.012], CD8 low TILs [HR 0.34, (0.12-0.94); P = 0.039], and FoxP3 + TILs [HR 10.11 (1.96-52.27); P = 0.006] in the invasive margin were associated with a worse prognosis (DFS) by multivariate analysis. In conclusion, we demonstrated that CD3 high , FoxP3 - , and CD3 high FoxP3 - TILs in the invasive margin were significantly associated with better DFS. CD8 high and CD4 high TILs in the invasive margin tended to predict better DFS in bladder cancer. Patients with CD4 high CD8 high TILs in the invasive margin were likely to have a better prognosis.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Prognóstico , Bexiga Urinária , Neoplasias da Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/metabolismo , Linfócitos T CD8-Positivos
9.
Phys Chem Chem Phys ; 25(19): 13728-13740, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158387

RESUMO

The electrochemical hydrogen evolution reaction (HER) in alkaline media provides an environmentally friendly industrial application approach to replace traditional fossil energy. The search for efficient, low-cost, and durable active electrocatalysts is central to the development of this area. Transition metal carbides (MXenes) have been emerging as a new family of two-dimensional (2D) materials that have great potential in the HER. Herein, density functional theory calculations are performed to systematically explore the structural and electronic properties and alkaline HER performances of Mo-based MXenes, as well as the influence of species and the coordination environment of single atoms on the improvement of the electrocatalytic activity of Mo2Ti2C3O2. The results show that Mo-based MXenes (Mo2CO2, Mo2TiC2O2, and Mo2Ti2C3O2) exhibit excellent H binding ability, while slow water decomposition kinetics hinders their HER performance. Replacing the O-terminal of Mo2Ti2C3O2 with a Ru single-atom (RuS-Mo2Ti2C3O2) could promote the decomposition of water owing to the stronger electron-donating ability of the atomic state Ru. In addition, Ru could also improve the binding ability of the catalyst to H by adjusting the surface electron distribution. As a result, RuS-Mo2Ti2C3O2 exhibits excellent HER performance with a water decomposition potential barrier of 0.292 eV and a H adsorption Gibbs free energy of -0.041 eV. These explorations bring new prospects for single atoms supported on Mo-based MXenes in the alkaline hydrogen evolution reaction.

10.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050540

RESUMO

In this paper, the effect of nitrogen annealing on the resistive switching characteristics of the rutile TiO2 nanowire-based W/TiO2/FTO memory device is analyzed. The W/TiO2/FTO memory device exhibits a nonvolatile bipolar resistive switching behavior with a high resistance ratio (RHRS/RLRS) of about two orders of magnitude. The conduction behaviors of the W/TiO2/FTO memory device are attributed to the Ohmic conduction mechanism and the Schottky emission in the low resistance state and the high resistance state, respectively. Furthermore, the RHRS/RLRS of the W/TiO2/FTO memory device is obviously increased from about two orders of magnitude to three orders of magnitude after the rapid nitrogen annealing treatment. In addition, the change in the W/TiO2 Schottky barrier depletion layer thickness and barrier height modified by the oxygen vacancies at the W/TiO2 interface is suggested to be responsible for the resistive switching characteristics of the W/TiO2/FTO memory device. This work demonstrates the potential applications of the rutile TiO2 nanowire-based W/TiO2/FTO memory device for high-density data storage in nonvolatile memory devices.

11.
Molecules ; 28(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630354

RESUMO

The development of low-cost and high-performance bifunctional electrocatalysts for overall water splitting is still challenging. Herein, we employed a facile electrodeposition method to prepare bifunctional cobalt phosphide for overall water splitting. The needle-like cobalt phosphide (Co-P-1) nanoarray is uniformly distributed on nickel foam. Co-P-1 exhibits excellent electrocatalytic activity for hydrogen evolution reaction (HER, 85 mV at 10 mA/cm2, 60 mV/dec) and oxygen evolution reaction (OER, 294 mV at 50 mA/cm2, 60 mV/dec). The cell-voltage of 1.60 V is found to achieve the current density of 10 mA/cm2 for overall water splitting in the two-electrode system, comparable to that of previously reported Pt/C/NF||RuO2/NF. The excellent electrocatalytic performance can be attributed to the needle-like structure with more active sites, accelerated charge transfer and evolved bubbles' release. This work can provide new approach to the development of a bifunctional electrocatalyst for overall water splitting.

12.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175244

RESUMO

A facile hydrothermal process has been developed to synthesize the α-Fe2O3 nanowire arrays with a preferential growth orientation along the [110] direction. The W/α-Fe2O3/FTO memory device with the nonvolatile resistive switching behavior has been achieved. The resistance ratio (RHRS/RLRS) of the W/α-Fe2O3/FTO memory device exceeds two orders of magnitude, which can be preserved for more than 103s without obvious decline. Furthermore, the carrier transport properties of the W/α-Fe2O3/FTO memory device are dominated by the Ohmic conduction mechanism in the low resistance state and trap-controlled space-charge-limited current conduction mechanism in the high resistance state, respectively. The partial formation and rupture of conducting nanofilaments modified by the intrinsic oxygen vacancies have been suggested to be responsible for the nonvolatile resistive switching behavior of the W/α-Fe2O3/FTO memory device. This work suggests that the as-prepared α-Fe2O3 nanowire-based W/α-Fe2O3/FTO memory device may be a potential candidate for applications in the next-generation nonvolatile memory devices.

13.
Molecules ; 28(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36985749

RESUMO

Traditional graphite anode material typically shows a low theoretical capacity and easy lithium decomposition. Molybdenum disulfide is one of the promising anode materials for advanced lithium-ion batteries, which possess low cost, unique two-dimensional layered structure, and high theoretical capacity. However, the low reversible capacity and the cycling-capacity retention rate induced by its poor conductivity and volume expansion during cycling blocks further application. In this paper, a collaborative control strategy of monodisperse MoS2/graphite composites was utilized and studied in detail. MoS2/graphite nanocomposites with different ratios (MoS2:graphite = 20%:80%, 40%:60%, 60%:40%, and 80%:20%) were prepared by mechanical ball-milling and low-temperature annealing. The graphite sheets were uniformly dispersed between the MoS2 sheets by the ball-milling process, which effectively reduced the agglomeration of MoS2 and simultaneously improved the electrical conductivity of the composite. It was found that the capacity of MoS2/graphite composites kept increasing along with the increasing percentage of MoS2 and possessed the highest initial discharge capacity (832.70 mAh/g) when MoS2:graphite = 80%:20%. This facile strategy is easy to implement, is low-cost, and is cosmically produced, which is suitable for the development and manufacture of advance lithium-ion batteries.

14.
Mol Psychiatry ; 26(11): 6253-6268, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33931733

RESUMO

Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca2+ channels and induces long-term plasticity by decreasing cellular cAMP levels. Here we identified an unanticipated additional mechanism of acute cannabinoid signaling in presynaptic terminals that regulates the size of synaptic vesicle pools available for neurotransmitter release. Specifically, we show that activation of CB1Rs in human and mouse neurons rapidly recruits vesicles to nerve terminals by suppressing the cAMP-dependent phosphorylation of synapsins. We confirmed this unanticipated mechanism using conditional deletion of synapsin-1, the predominant synapsin isoform in human neurons, demonstrating that synapsin-1 significantly contributes to the CB1R-dependent regulation of neurotransmission. Interestingly, acute activation of the Gi-DREADD hM4D mimics the effect of CB1R activation in a synapsin-1-dependent manner, suggesting that the control of synaptic vesicle numbers by synapsin-1 phosphorylation is a general presynaptic mechanism of neuromodulation. Thus, we uncovered a CB1R-dependent presynaptic mechanism that rapidly regulates the organization and neurotransmitter release properties of synapses.


Assuntos
Canabinoides , Sinapsinas , Animais , Canabinoides/farmacologia , Humanos , Camundongos , Receptores de Canabinoides , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas
15.
Anal Bioanal Chem ; 413(5): 1429-1440, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33403425

RESUMO

The sensitive chitosan (CTS) detection methods based on the resonance Rayleigh scattering (RRS) quenching method and fluorescence quenching of Eosin Y were put forward. In the HAC-NaAC buffer solution, Eosin Y interacted with Triton X-100 to generate the binary complex which served as the RRS spectral probe. When CTS was interacted with the binary complex, the RRS intensity decreased with the increase of CTS. At the same time, the fluorescence intensity of Eosin Y decreased in the presence of Triton X-100, and the fluorescence intensity of "Eosin Y+Triton X-100" system further decreased when CTS was added. So it was further proved that there was a forming complex in "Eosin Y+Triton X100+CTS" system. The interaction was characterized by zeta potential, RRS, fluorescence spectrum, and UV-Vis spectroscopy. Under optimal conditions, there was a good linear relationship between the RRS decreased intensity (ΔI) and the concentration of CTS in the range of 0.05-1.30 µg/mL, with a regression equation of ΔI = 1325c + 73.66 and correlation coefficient (R2) of 0.9907. The detection limit was 0.0777 µg/mL. Likewise, the linear range of the fluorescence quenching was 0.03-1.30 µg/mL; the regression equation was ΔF = 1926c + 294.0 with R2 = 0.9800 under fluorescence quenching. The detection limit was 0.0601 µg/mL. Therefore, the dual-channel sensor for the determination of CTS was applied to the health products, and the results were satisfactory. The t test result showed that there was no statistical difference between the two methods.


Assuntos
Quitosana/análise , Amarelo de Eosina-(YS)/química , Corantes Fluorescentes/química , Cápsulas , Limite de Detecção , Espectrometria de Fluorescência/métodos
16.
J Transl Med ; 18(1): 194, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398098

RESUMO

BACKGROUND: The association between blood pressure change and kidney damage in patients with abnormal blood glucose remains unclear. The current study aimed to identify systolic blood pressure (SBP) trajectories among the prediabetic population and to determine their association with kidney damage after a long-term follow-up. METHODS: The incidence, development, and prognosis of diabetic kidney disease (INDEED) study is nested in the Kailuan cohort study with a focus on population with diabetes and prediabetes. We screened out people with prediabetes in 2006 and with more than three SBP records from 2006 to 2014 biennially. We used the latent mixture modeling to fit five groups of trajectories of SBP. In 2016, estimated glomerular filtration rate (eGFR), urinary albumin creatinine ratio (uACR), and urinary α1-microglobulin (α1MG), transferrin and α1-acid glycoprotein were measured, and the association between SBP trajectories and these markers was analyzed by linear regression and logistic regression models. RESULTS: Totally, 1451 participants with prediabetes and without kidney damage were identified in 2006. Five heterogeneous SBP trajectories were detected based on the longitudinal data from 2006 to 2014, as low-stable group (n = 323), moderate-stable group (n = 726), moderate-increasing group (n = 176), moderate-decreasing group (n = 181), and high-stable group (n = 45). Linear regression analysis showed that the moderate and high SBP groups had lower eGFR, higher uACR, higher urinary α1MG, higher transferrin, and higher α1-acid glycoprotein than the low-stable group. Multivariable analysis attenuated the association but did not change the statistical significance. CONCLUSIONS: Prediabetic patients with persistent high-level SBP trajectory or gradually increased SBP trajectory had severer kidney damage during follow-up.


Assuntos
Estado Pré-Diabético , Pressão Sanguínea , Estudos de Coortes , Taxa de Filtração Glomerular , Humanos , Rim , Estado Pré-Diabético/complicações , Estado Pré-Diabético/epidemiologia , Fatores de Risco
17.
Mar Drugs ; 18(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121316

RESUMO

A convenient and sensitive triple-wavelength overlapping resonance Rayleigh scattering (TWO-RRS) method for the detection of chito-oligosaccharides (COS) was proposed based on enhancing the rigid surface of porous reticular spatial structure of gelatin and COS by introducing allura red AC (AR). The interaction and resultant porous reticular spatial structure were characterized with transmission electron microscopy (TEM), RRS, and UV-Vis spectroscopy. The results indicated that gelatin and COS formed porous reticular spatial structure with an average diameter of 1.5-2.0 µm, and the RRS value of COS-AR-gelatin ternary system with gelatin participation was significantly higher than that of COS-AR binary system. Under the optimal conditions, the enhanced TWO-RRS intensity of the system was linearly proportional to COS concentration in the range of 0.30-2.50 µg/mL, and the regression equation was ΔI = 4933.2c-446.21 with R2 = 0.9980. The limit of detection was 0.0478 µg/mL. So, a new method for the detection of COS was established and verified in the health products with satisfactory results.


Assuntos
Quitina/química , Gelatina/química , Oligossacarídeos/química , Animais , Compostos Azo , Espectrometria de Fluorescência
18.
Small ; 13(13)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28134465

RESUMO

A new kind of multitetrahedron sheath ternary ZnS-(CdS/Au) hetero-nanorod is prepared, in which one 1D ultrathin ZnS nanorod is integrated with segmented tetrahedron sheaths made of CdS, and more importantly, Au nanoparticles can be decorated in a targeted manner onto the vertexes and edges of CdS tetrahedron sheaths solely, for achieving performance improvement in photoelectric and photochemical conversion applications.

19.
Inorg Chem ; 53(7): 3338-44, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24617867

RESUMO

Reversible mechanochromic luminescence in cationic platinum(II) terpyridyl complexes is described. The complexes [Pt(Nttpy)Cl]X2 (Nttpy = 4'-(p-nicotinamide-N-methylphenyl)-2,2':6',2″-terpyridine, X = PF6 (1), SbF6 (2), Cl (3), ClO4 (4), OTf (5), BF4 (6)) exhibit different colors under ambient light in the solid state, going from red to orange to yellow. All of these complexes are brightly luminescent at both room temperature and 77 K. Upon gentle grinding, the yellow complexes (4-6) turn orange and exhibit bright red luminescence. The red luminescence can be changed back to yellow by the addition of a few drops of acetonitrile to the sample. Crystallographic studies of the yellow and red forms of complex 5 suggest that the mechanochromic response is likely the result of a change in intermolecular Pt···Pt distances upon grinding.

20.
J Colloid Interface Sci ; 664: 198-209, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460384

RESUMO

The floatable photocatalyst at N2-water interface allows the adequate supply of N2 reactant and the utilization of photothermal energy for photocatalytic N2 fixation, however, the presence of non-volatile NO3- product poses a challenge to the stability as it easily covers the catalytic active sites. Herein, a floatable TiO2/Bi/CC (Carbon cloth) photocatalyst was designed, in which the non-volatile NO3- can be transformed to the volatile NH3 via the newly synergistic relay photocatalysis pathway (N2 â†’ NO3- â†’ NH3) between TiO2 (N2 â†’ NO3-) and Bi (NO3- â†’ NH3). Attractively, the spontaneous NO3- â†’ NO2- step occurs on Bi component to promote the relay pathway performing. Therefore, TiO2/Bi/CC system displays better long-term stability than TiO2/CC, and moreover, it achieves a higher NH3 yield of 8.28 mmol L-1 h-1 g-1 (i.e. 4.14 mmol h-1 m-2) than that 1.46 mmol L-1 h-1 g-1 for TiO2/Bi powder. Importantly, the N2 fixation products by TiO2/Bi/CC effectively promote lettuce growth and enhance lettuce nutrient contents, which further validates the feasibility of this system in large-scale application of crop cultivation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa