Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Basic Microbiol ; 62(2): 185-196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34913505

RESUMO

Bacterial blight (BB) of rice is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The evolution of new pathogenic races of bacterial blight pathogen is always a potential threat for rice production. The deployment of pathotype-specific resistant genes in the host plants is a feasible strategy to develop BB-resistant varieties. Therefore, continuous disease monitoring, identification of Xoo pathotypes, and their distribution are crucial to managing BB. In this study, 71 Xoo isolates were collected from the Godavari delta in Andhra Pradesh (India) and their virulence profiles on rice BB differentials were characterized. Data revealed that different International Rice Bacterial Blight (IRBB) lines with single BB resistance genes were susceptible to 73.2%-97.2% of the isolates, except IRBB13 (possessing BB resistance gene, xa13) which showed a moderately susceptible or susceptible reaction to 47.9% of the isolates. Three gene combination rice differentials like IRBB56 (Xa4 + xa5 + xa13), IRBB57 (Xa4 + xa5 + Xa21), IRBB58 (Xa4 + xa13 + Xa21), and IRBB59 (xa5 + xa13 + Xa21) showed very broad-spectrum resistance to majority of the Xoo isolates from the region. None of the tested Xoo isolates were virulent on IRBB58 (Xa4 + xa13 + Xa21), IRBB60 (Xa4 + xa5 + xa13 + Xa21), and IRBB66 (Xa4 + xa5 + Xa7 + xa13 + Xa21). Based on the virulence reaction, 71 Xoo isolates were grouped into 10 major pathotypes. Highly virulent pathotypes viz., IXoPt # 14, 17, 19, and 22 can break the resistance of major BB-resistant genes and were commonly distributed throughout the surveyed regions. Genotypic data of 71 Xoo isolates using J3 primer divided them into three major clusters. Cluster I consisted of 24 Xoo isolates that belonged to pathotype IXoPt-19. Cluster II consisted of 41 Xoo isolates belonging to seven different pathotypes, and Cluster III was composed of six isolates from three different pathotypes. The findings of this study will be helpful to develop rice varieties with pathotype-specific broad-spectrum resistance against BB.


Assuntos
Oryza , Xanthomonas , Genótipo , Doenças das Plantas , Xanthomonas/genética
2.
Plant Physiol ; 162(1): 9-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23463782

RESUMO

The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens.


Assuntos
Acetilesterase/metabolismo , Arabidopsis/fisiologia , Aspergillus nidulans/enzimologia , Brachypodium/fisiologia , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Acetilação , Acetilesterase/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/imunologia , Ascomicetos/patogenicidade , Aspergillus nidulans/genética , Botrytis/patogenicidade , Brachypodium/citologia , Brachypodium/genética , Brachypodium/imunologia , Resistência à Doença , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Peróxido de Hidrogênio/metabolismo , Pectinas/metabolismo , Componentes Aéreos da Planta , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Regulação para Cima , Xanthomonas/patogenicidade
3.
Plant Physiol Biochem ; 213: 108836, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941724

RESUMO

The root system architecture is an important complex trait in rice. With changing climatic conditions and soil nutrient deficiencies, there is an immediate need to breed nutrient-use-efficient rice varieties with robust root system architectural (RSA) traits. To map the genomic regions associated with crucial component traits of RSA viz. root length and root volume, a biparental F2 mapping population was developed using TI-128, an Ethyl Methane Sulphonate (EMS) mutant of a mega variety BPT-5204 having high root length (RL) and root volume (RV) with wild type BPT-5204. Extreme bulks having high RL and RV and low RL and RV were the whole genome re-sequenced along with parents. Genetic mapping using the MutMap QTL-Seq approach elucidated two genomic intervals on Chr.12 (3.14-3.74 Mb, 18.11-20.85 Mb), and on Chr.2 (23.18-23.68 Mb) as potential regions associated with both RL and RV. The Kompetitive Allele Specific PCR (KASP) assays for SNPs with delta SNP index near 1 were associated with higher RL and RV in the panel of sixty-two genotypes varying in root length and volume. The KASP_SNPs viz. Chr12_S4 (C→T; Chr12:3243938), located in the 3' UTR region of LOC_Os12g06670 encoding a protein kinase domain-containing protein and Chr2_S6 (C→T; Chr2:23181622) present upstream in the regulator of chromosomal condensation protein LOC_Os2g38350. Validation of these genes using qRT-PCR and in-silico studies using various online tools and databases revealed higher expression in TI-128 as compared to BPT- 5204 at the seedling and panicle initiation stages implying the functional role in enhancing RL and RV.

4.
Front Plant Sci ; 14: 1247014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731986

RESUMO

Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production.

5.
Bioinformatics ; 23(1): 1-4, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17077096

RESUMO

MOTIVATION: Simple sequence repeats (SSRs) are abundant across genomes. However, the significance of SSRs in organellar genomes of rice has not been completely understood. The availability of organellar genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. RESULTS: We have analyzed SSRs in mitochondrial and chloroplast genomes of rice. We identified 2528 SSRs in the mitochondrial genome and average 870 SSRs in the chloroplast genomes. About 8.7% of the mitochondrial and 27.5% of the chloroplast SSRs were observed in the genic region. Dinucleotides were the most abundant repeats in genic and intergenic regions of the mitochondrial genome while mononucleotides were predominant in the chloroplast genomes. The rps and nad gene clusters of mitochondria had the maximum repeats, while the rpo and ndh gene clusters of chloroplast had the maximum repeats. We identified SSRs in both organellar genomes and validated in different cultivars and species.


Assuntos
Cloroplastos/genética , DNA de Cloroplastos/análise , DNA Intergênico/análise , Repetições Minissatélites , Mitocôndrias/genética , Oryza/genética , Sequência de Bases , Cloroplastos/química , Repetições de Dinucleotídeos , Frequência do Gene , Marcadores Genéticos , Mitocôndrias/química , Folhas de Planta/química
6.
PLoS One ; 13(5): e0198260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29813124

RESUMO

Bacterial blight (BB) in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major global production constraint, particularly in irrigated and rain-fed lowland areas. Improved Samba Mahsuri (ISM) is an elite, high-yielding, fine-grain type, BB-resistant rice variety possessing three BB-resistant genes (Xa21, xa13 and xa5) and is highly popular in the southern parts of India. As the BB pathogen is highly dynamic and the evolution of pathogen virulence against the deployed resistance genes is common, we added a novel BB-resistant gene, Xa38, into ISM through marker-assisted backcross breeding (MABB) to increase the spectrum and durability of BB resistance. The breeding line PR 114 (Xa38) was used as the donor for Xa38, whereas ISM was used as the recurrent parent. Foreground selection was conducted using PCR-based gene-specific markers for the target genes, whereas background selection was conducted using a set of polymorphic SSR markers between the parents and backcrossing that continued until the third generation. Eighteen homozygous BC3F2 plants possessing all four BB-resistant genes in the homozygous state and with a recurrent parent genome (RPG) recovery of more than 92% were identified and advanced to the BC3F6 generation. These 18 backcross-derived lines (BDLs) exhibited very high level of resistance against multiple Xoo strains and displayed agro-morphological traits, grain qualities and yield levels similar to or better than those of the recurrent parent ISM.


Assuntos
Resistência à Doença/genética , Genes Bacterianos/genética , Hibridização Genética , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Xanthomonas/genética
7.
Rice (N Y) ; 7(1): 12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26055994

RESUMO

[Symbol: see text][Symbol: see text][Symbol: see text].

8.
Biotechnol J ; 4(3): 400-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19253322

RESUMO

Bacterial blight (BB) is a serious disease of rice in India. We have used molecular marker-assisted selection in a backcross breeding program to introgress three genes (Xa21, xa13, and xa5) for BB resistance into Triguna, a mid-early duration, high yielding rice variety that is susceptible to BB. At each generation in the backcross program, molecular markers were used to select plants possessing these resistance genes and to select plants that have maximum contribution from the Triguna genome. A selected BC3F1 plant was selfed to generate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Plants containing the two-gene combination, Xa21 and xa13, were found to exhibit excellent resistance against BB. Single plant selections for superior agronomic characteristics were performed on the progeny of these plants, from BC(3)F(3) generation onwards. The selected plants were subjected to yield trials at the BC(3)F(8) generation and were found to have a significant yield advantage over Triguna. The newly developed lines are being entered into national multi-location field trials. This work represents a successful example of the application of molecular marker-assisted selection for BB resistance breeding in rice.


Assuntos
Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas , Genes Recessivos , Marcadores Genéticos/genética , Variação Genética , Genoma de Planta , Heterozigoto , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Polimorfismo Genético , Xanthomonas/metabolismo
9.
In Silico Biol ; 8(2): 87-104, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18928198

RESUMO

Microsatellites are abundant across prokaryotic and eukaryotic genomes. However, comparative analysis of microsatellites in the organellar genomes of plants and their utility in understanding phylogeny has not been reported. The purpose of this study was to understand the organization of microsatellites in the coding and non-coding regions of organellar genomes of major cereals viz., rice, wheat, maize and sorghum. About 5.8-14.3% of mitochondrial and 30.5-43.2% of chloroplast microsatellites were observed in the coding regions. About 83.8-86.8% of known mitochondrial genes had at least one microsatellite while this value ranged from 78.6-82.9% among the chloroplast genomes. Dinucleotide repeats were the most abundant in the coding and non-coding regions of the mitochondrial genome while mononucleotides were predominant in chloroplast genomes. Maize harbored more repeats in the mitochondrial genome, which could be due to the larger size of genome. A phylogenetic analysis based on mitochondrial and chloroplast genomic microsatellites revealed that rice and sorghum were closer to each other, while wheat was the farthest and this corroborated with the earlier reported phylogenies based on nuclear genome co-linearity and chloroplast gene-based analysis.


Assuntos
DNA de Cloroplastos/análise , DNA Mitocondrial/análise , Grão Comestível , Repetições de Microssatélites , Sequência de Bases , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Grão Comestível/classificação , Grão Comestível/genética , Evolução Molecular , Genoma de Planta , Repetições de Microssatélites/genética , Oryza/classificação , Oryza/genética , Filogenia , Sorghum/classificação , Sorghum/genética , Triticum/classificação , Triticum/genética , Zea mays/classificação , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa