Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cells Tissues Organs ; 211(4): 492-505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33596574

RESUMO

Research on synthesis, characterization, and understanding of novel properties of nanomaterials has led researchers to exploit their potential applications. When compared to other nanotechnologies described in the literature, electrospinning has received significant interest due to its ability to synthesize novel nanostructures (such as nanofibers, nanorods, nanotubes, etc.) with distinctive properties such as high surface-to-volume ratio, porosity, various morphologies such as fibers, tubes, ribbons, mesoporous and coated structures, and so on. Various materials such as polymers, ceramics, and composites have been fabricated using the electrospinning technique. Among them, polymers, especially block copolymers, are one of the useful and niche systems studied recently owing to their unique and fascinating properties in both solution and solid state due to thermodynamic incompatibility of the blocks, that results in microphase separation. Morphology and mechanical properties of electrospun block copolymers are intensely influenced by quantity and length of soft and hard segments. They are one of the best studied systems to fit numerous applications due to a broad variety of properties they display upon varying the composition ratio and molecular weight of blocks. In this review, the synthesis, fundamentals, electrospinning, and tissue engineering application of block copolymers are highlighted.


Assuntos
Nanofibras , Engenharia Tecidual , Nanofibras/química , Nanotecnologia , Polímeros/química , Porosidade , Engenharia Tecidual/métodos
2.
J Nanosci Nanotechnol ; 15(4): 2591-604, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26353470

RESUMO

Pharmaceutically active compounds require different modes of drug delivery systems to accomplish therapeutic activity without loss of its activity and lead to exhibit no adverse effects. Originating from ancient days, pulmonary mode of drug delivery is gaining much importance compared to other modes of drug delivery systems with respect to specific diseases. Pulmonary drug delivery is a non-invasive route for local and systemic therapies together with more patient convenience, compliance and is a needleless system. In this review, we addressed the vaccine delivery via non- or minimally invasive routes. Polymeric nanoparticles are preferred for use in the pulmonary delivery devices owing to a prolonged retention in lungs. Small site for absorption, mucociliary clearance, short residence time and low bioavailability are some of the limitations in pulmonary drug delivery have been resolved by generating micro- and nano-sized aerosol particles. We have classified the breathable medicine on the basis of available devices for inhalation and also prominent diseases treated through pulmonary mode of drug delivery. Owing to increasing toxicity of pharmacological drugs, the use of natural medicines has been rapidly gaining importance recently. The review article describes breathability of medicines or the pulmonary mode of drug delivery system and their drug release profile, absorption, distribution and efficacy to cure asthma and diabetes.


Assuntos
Administração por Inalação , Sistemas de Liberação de Medicamentos , Nanomedicina , Nanopartículas/administração & dosagem , Humanos , Pulmão/metabolismo , Pulmão/fisiologia , Extratos Vegetais/administração & dosagem , Pós , Vacinas/administração & dosagem
3.
Wound Repair Regen ; 21(1): 1-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23126632

RESUMO

Mimicking porous topography of natural extracellular matrix is advantageous for successful regeneration of damaged tissues or organs. Nanotechnology being one of the most promising and growing technology today shows an extremely huge potential in the field of tissue engineering. Nanofibrous structures that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue-engineered scaffolds for skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel biocomposite materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell-adhesive ligands and bioactive molecules such as drugs, enzymes, and cytokines. In skin tissue engineering, usage of allogeneic skin is avoided to reestablish physiological continuity and also to address the challenge of curing acute and chronic wounds, which remains as the area of exploration with various biomimetic approaches. Two-dimensional, three-dimensional scaffolds and stem cells are presently used as dermal regeneration templates for the treatment of full-thickness skin defects resulting from injuries and severe burns. The present review elaborates specifically on the fabrication of nanofibrous structured strategies for wound dressings, wound healing, and controlled release of growth factors for skin tissue regeneration.


Assuntos
Nanofibras , Nanomedicina/métodos , Pele/lesões , Cicatrização , Ferimentos e Lesões/terapia , Materiais Biocompatíveis , Adesão Celular , Doença Crônica , Humanos , Nanomedicina/tendências , Regeneração , Pele/fisiopatologia , Pele Artificial , Engenharia Tecidual , Alicerces Teciduais
4.
J Mater Sci Mater Med ; 24(12): 2863-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23999881

RESUMO

Every year, millions of people suffer from dermal wounds caused by heat, fire, chemicals, electricity, ultraviolet radiation or disease. Tissue engineering and nanotechnology have enabled the engineering of nanostructured materials to meet the current challenges in skin treatments owing to such rising occurrences of accidental damages, skin diseases and defects. The abundance and accessibility of adipose derived stem cells (ADSCs) may prove to be novel cell therapeutics for skin regeneration. The nanofibrous PVA/gelatin/azide scaffolds were then fabricated by electrospinning using water as solvent and allowed to undergo click reaction. The scaffolds were characterized by SEM, contact angle and FTIR. The cell-scaffold interactions were analyzed by cell proliferation and the results observed that the rate of cell proliferation was significantly increased (P ≤ 0.05) on PVA/gelatin/azide scaffolds compared to PVA/gelatin nanofibers. In the present study, manipulating the biochemical cues by the addition of an induction medium, in combination with environmental and physical factors of the culture substrate by functionalizing with click moieties, we were able to drive ADSCs into epidermal lineage with the development of epidermis-like structures, was further confirmed by the expression of early and intermediate epidermal differentiation markers like keratin and filaggrin. This study not only provides an insight into the design of a site-specific niche-like microenvironment for stem cell lineage commitment, but also sheds light on the therapeutic application of an alternative cell source-ADSCs, for wound healing and skin tissue reconstitution.


Assuntos
Adipócitos/citologia , Química Click/métodos , Queratinócitos/citologia , Nanofibras/química , Polivinil/química , Pele/patologia , Células-Tronco/citologia , Azidas/química , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Epiderme/patologia , Proteínas Filagrinas , Gelatina/química , Humanos , Pele Artificial , Propriedades de Superfície , Engenharia Tecidual/métodos , Alicerces Teciduais , Cicatrização
5.
Biomater Adv ; 149: 213390, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963249

RESUMO

The development of fascinating materials with functional properties has revolutionized the humankind with materials comfort, stopped the spreading of diseases, relieving the environmental pollution pressure, economized government research funds, and prolonged their serving life. The outbreak of Coronavirus Disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered great global public health concern. Face masks are crucial tools to impede the spreading of SARS-CoV-2 from human to human. However, current face masks exhibit in a variety of colors (opaque), like blue, black, red, etc., leading to a communication barrier between the doctor and the deaf-mute patient when wearing a mask. High optical transparency filters can be utilized for both personal protection and lip-reading. Thus, shaping face air filter into a transparent appearance is an urgent need. Electrospinning technology, as a mature technology, is commonly used to form nanofiber materials utilizing high electrical voltage. With the alteration of the diameters of nanofibers, and proper material selection, it would be possible to make the transparent face mask. In this article, the research progress in the transparent face air filter is reviewed with emphasis on three parts: mechanism of the electrospinning process and light transmission, preparation of transparent face air filter, and their innovative potential. Through the assessment of classic cases, the benefits and drawbacks of various preparation strategies and products are evaluated, to provide general knowledge for the needs of different application scenarios. In the end, the development directions of transparent face masks in protective gear, particularly their novel functional applications and potential contributions in the prevention and control of the epidemic are also proposed.


Assuntos
Filtros de Ar , COVID-19 , Nanofibras , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Filtração
6.
ACS Biomater Sci Eng ; 9(11): 6357-6368, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37847169

RESUMO

Immortalized liver cell lines and primary hepatocytes are currently used as in vitro models for hepatotoxic drug screening. However, a decline in the viability and functionality of hepatocytes with time is an important limitation of these culture models. Advancements in tissue engineering techniques have allowed us to overcome this challenge by designing suitable scaffolds for maintaining viable and functional primary hepatocytes for a longer period of time in culture. In the current study, we fabricated liver-specific nanofiber scaffolds with polylactic acid (PLA) along with a decellularized liver extracellular matrix (LEM) by the electrospinning technique. The fabricated hybrid PLA-LEM scaffolds were more hydrophilic and had better swelling properties than the PLA scaffolds. The hybrid scaffolds had a pore size of 38 ± 8 µm and supported primary rat hepatocyte cultures for 10 days. Increased viability (2-fold increase in the number of live cells) and functionality (5-fold increase in albumin secretion) were observed in primary hepatocytes cultured on the PLA-LEM scaffolds as compared to those on conventional collagen-coated plates on day 10 of culture. A significant increase in CYP1A2 enzyme activity was observed in hepatocytes cultured on PLA-LEM hybrid scaffolds in comparison to those on collagen upon induction with phenobarbital. Drugs like acetaminophen and rifampicin showed the highest toxicity in hepatocytes cultured on hybrid scaffolds. Also, the lethal dose of these drugs in rodents was accurately predicted as 1.6 g/kg and 594 mg/kg, respectively, from the corresponding IC50 values obtained from drug-treated hepatocytes on hybrid scaffolds. Thus, the fabricated liver-specific electrospun scaffolds maintained primary hepatocyte viability and functionality for an extended period in culture and served as an effective ex vivo drug screening platform to predict an accurate in vivo drug-induced hepatotoxicity.


Assuntos
Nanofibras , Ratos , Animais , Avaliação Pré-Clínica de Medicamentos , Alicerces Teciduais , Hepatócitos/metabolismo , Fígado , Matriz Extracelular , Colágeno/metabolismo , Poliésteres/farmacologia , Poliésteres/metabolismo
7.
Nanotechnology ; 23(38): 385102, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22947662

RESUMO

Myocardial tissue lacks the ability to appreciably regenerate itself following myocardial infarction (MI) which ultimately results in heart failure. Current therapies can only retard the progression of disease and hence tissue engineering strategies are required to facilitate the engineering of a suitable biomaterial to repair MI. The aim of this study was to investigate the in vitro properties of an injectable biomaterial for the regeneration of infarcted myocardium. Fabrication of core/shell fibers was by co-axial electrospinning, with poly(glycerol sebacate) (PGS) as core material and poly-L-lactic acid (PLLA) as shell material. The PLLA was removed by treatment of the PGS/PLLA core/shell fibers with DCM:hexane (2:1) to obtain PGS short fibers. These PGS short fibers offer the advantage of providing a minimally invasive injectable technique for the regeneration of infarcted myocardium. The scaffolds were characterized by SEM, FTIR and contact angle and cell-scaffold interactions using cardiomyocytes. The results showed that the cardiac marker proteins actinin, troponin, myosin heavy chain and connexin 43 were expressed more on short PGS fibers compared to PLLA nanofibers. We hypothesized that the injection of cells along with short PGS fibers would increase cell transplant retention and survival within the infarct, compared to the standard cell injection system.


Assuntos
Decanoatos/química , Glicerol/análogos & derivados , Regeneração Tecidual Guiada/métodos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Cristalização/métodos , Glicerol/química , Injeções , Teste de Materiais , Procedimentos Cirúrgicos Minimamente Invasivos , Tamanho da Partícula , Coelhos , Regeneração/fisiologia , Propriedades de Superfície
8.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616488

RESUMO

The most recent and advanced class of crystalline and permeable compounds are covalent organic frameworks (COFs). Due to their exceptional qualities, such as their porous structure, high surface area, strong chemical and thermal stabilities, low density, good water stability, luminescent nature, and so on, COFs have seen remarkable growth over the past ten years. COFs have been successfully researched for a number of applications based on these characteristics. The current state of COFs has been reported in this study, with particular attention paid to their design, topology, synthesis, and a variety of biological applications, including drug delivery systems, photodynamic and photothermal therapy, biosensing, bioimaging, etc. Moreover, several miscellaneous applications, such as catalysis, gas storage and separation, photocatalysis, sensors, solar cells, supercapacitors, and 3D printers, have also been explored. It is significant that we have examined current research on COFs with a focus on the biological applications, which are infrequently covered in the literature. Descriptions of the difficulties and prospective outcomes have also been given.

9.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365635

RESUMO

In the last decades, development of hybrid materials, especially inorganic-organic materials, coordination polymers, conducting polymers, carbon materials, and many more, has produced breakthroughs in diverse applications. Various advance materials have been reported in the literature using metal organic frameworks (MOFs), which compensate for the limitations of sensors. Diverse combinations of HMs not only offer excellent features, but also give a ray of hope for unprecedented advances in materials in different research areas, such as sensing, energy storage, catalysis, non-linear optics, drug-delivery systems, gas storage, etc. Chemiresistor sensors are a core enabling sensor technology and have led to much progress in the field of material science. Here, we have reviewed the recent progress in chemiresistive sensors based on HMs for nitroaromatic compounds, which could be beneficial for researchers that explore this field further. We have put emphasis on sensing mechanisms and the performance of diverse HMs for nitroaromatic sensing applications including pesticides, pollutants, explosives, polycyclic aromatic hydrocarbons (PAHs) and persistent organic pollutants (POPs). In the end, we explored opportunities, challenges, and future perspectives in this emerging field.

10.
Biomimetics (Basel) ; 7(4)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36278706

RESUMO

The major goal of liver tissue engineering is to reproduce the phenotype and functions of liver cells, especially primary hepatocytes ex vivo. Several strategies have been explored in the recent past for culturing the liver cells in the most apt environment using biological scaffolds supporting hepatocyte growth and differentiation. Nanofibrous scaffolds have been widely used in the field of tissue engineering for their increased surface-to-volume ratio and increased porosity, and their close resemblance with the native tissue extracellular matrix (ECM) environment. Electrospinning is one of the most preferred techniques to produce nanofiber scaffolds. In the current review, we have discussed the various technical aspects of electrospinning that have been employed for scaffold development for different types of liver cells. We have highlighted the use of synthetic and natural electrospun polymers along with liver ECM in the fabrication of these scaffolds. We have also described novel strategies that include modifications, such as galactosylation, matrix protein incorporation, etc., in the electrospun scaffolds that have evolved to support the long-term growth and viability of the primary hepatocytes.

11.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365701

RESUMO

Novel materials have been developed because of technological advancements combined with material research. Metal-organic frameworks (MOF) technology has been investigated for biomedical applications in this line. Nonetheless, as our team has learned from current literature, selecting metal ions/organic linkers, synthesis techniques, water stability/solubility, toxicity, and the possibility of biomolecules/drugs (enzyme, protein, DNA/RNA, and antibodies, among others) tagging/conjugation are the major challenges/factors. These issues/factors have an impact on MOFs' performance in biomedical applications, and they also raise a lot of doubts about its real-time biological utility in the near future. We targeted a comprehensive review on the MOFs for biomedical applications to keep these considerations in mind. The evolution of MOF technology is based on their interesting features such as biological or pharmacological activity, biocompatibility, limited toxicity, and particular host-guest interactions, as well as environmental friendliness. In this paper, we have summarized the state-of-the-art progress pertaining to MOFs' biomedical applications such as biosensing, biomedical, and drug delivery applications in this field that is still very new.

12.
Polymers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683893

RESUMO

It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.

13.
Membranes (Basel) ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208292

RESUMO

Solvent separation and dehydration are important operations for industries and laboratories. Processes such as distillation and extraction are not always effective and are energy-consuming. An alternate approach is offered by pervaporation, based on the solution-diffusion transport mechanism. Polymer-based membranes such as those made of Polydimethylsiloxane (PDMS) have offered good pervaporation performance. Attempts have been made to improve their performance by incorporating inorganic fillers into the PDMS matrix, in which metal-organic frameworks (MOFs) have proven to be the most efficient. Among the MOFs, Zeolitic imidazolate framework (ZIF) based membranes have shown an excellent performance, with high values for flux and separation factors. Various studies have been conducted, employing ZIF-PDMS membranes for pervaporation separation of mixtures such as aqueous-alcoholic solutions. This paper presents an extensive review of the pervaporation performance of ZIF-based mixed matrix membranes (MMMs), novel synthesis methods, filler modifications, factors affecting membrane performance as well as studies based on polymers other than PDMS for the membrane matrix. Some suggestions for future studies have also been provided, such as the use of biopolymers and self-healing membranes.

14.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202499

RESUMO

Small-diameter vascular grafts fabricated from synthetic polymers have found limited applications so far in vascular surgeries, owing to their poor mechanical properties. In this study, cylindrical nanofibrous structures of highly oriented nanofibers made from polyacrylonitrile, poly (lactide-co-glycolide) (PLGA), polycaprolactone (PCL) and poly(vinyl acetate) (PVAc) were investigated. Cylindrical collectors with alternate conductive and non-conductive segments were used to obtain highly oriented nanofibrous structures at the same time with better mechanical properties. The surface morphology (orientation), mechanical properties and suture retention of the nanofibrous structures were characterized using SEM, mechanical tester and universal testing machine, respectively. The PLGA nanofibrous cylindrical structure exhibited excellent properties (tensile strength of 9.1 ± 0.6 MPa, suture retention strength of 27N and burst pressure of 350 ± 50 mmHg) when compared to other polymers. Moreover, the PLGA grafts showed good porosity and elongation values, that could be potentially used for vascular graft applications. The combination of PLGA nanofibers with extracellular vesicles (EVs) will be explored as a potential vascular graft in future.

15.
J Nanosci Nanotechnol ; 10(2): 1139-47, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20352769

RESUMO

The present scenario is that neutral or uncharged polymers are electrospun first followed by surface modification to introduce the functional groups onto the nanofibers surface. These groups improve the adhesion between the nanofibers and materials to be coated. The surface modification involves significant steps to get desired functional groups on the nanofibers surface and also time consuming. This paper deals with one step fabrication of nanofibers with hydroxyl functional groups. Nanofibers were fabricated by electrospinning of poly(ethylene terephthalate) (PET) with cellulose acetate (CA) or cellulose (C). Deposition of various metal oxide nanoparticles on these nanofiber surfaces was carried out using liquid phase deposition (LPD) and electrospraying techniques. Distribution of the nanoparticles and aggregation minimization were obtained by optimization of electrospraying technique. The nucleation density and the morphology of coated nanoparticles by LPD technique on PET surface were lower amount, whereas they are higher on PET/CA and PET/C blended surface, due to hydroxyl functional groups on the blended nanofiber surface, which is a novel. This study is helpful to understand about the complimentary information of the process based on the adoption of these two techniques. The characterizations of these nanofibers were carried out by using SEM, contact angle analysis, tensile, porosity measurements, and EDAX analysis. These membranes find potential applications as filter media in protective clothing and air filter applications.

16.
Mar Pollut Bull ; 160: 111704, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33181967

RESUMO

Micro-plastics (MPs) are an environmental threat that has been gaining importance lately with an increasing number of studies demonstrating that they are a larger threat than previously thought. Scientists around the world have used a wide number of methods in their studies and they have adapted changes in response to the specific nature of the research undertaken. This article provides an account of the historical development of the MP menace, development of methods and tools used in MP research and also describes the challenges that are faced to further advancement to take place. The article is categorized into various sections that include history, sources, isolation, extraction, and characterization of MPs. Among the thermal characterization techniques, direct pyrolysis mass spectrometry and secondary ion mass spectrometry, which are widely used to characterize the plastics, but not utilised so far in this field are also highlighted for future direction.


Assuntos
Plásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água/análise
17.
Macromol Rapid Commun ; 30(20): 1769-74, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21638452

RESUMO

Military soldiers, medicinal doctors, and ordinary people require protection against chemical and biological warfare (C&B) agents. Activated charcoal impregnated with metal ions is currently used in protective clothing applications, which has some disadvantages. Electrospinning is emerging as one of the cheapest technologies to produce continuous nanofibers with a high surface area-to-volume ratio. In the present study, electrospinning of a poly(ethylene imine) (PEI)/nylon blend has been carried out in which PEI acts as a support material as well as a catalytic media. The membrane is combined with non-selective metal oxide nanoparticles to degrade C&B agents into non-toxic products. In addition, these membranes possess hydrophilic properties, hence they are suitable candidates for protective clothing applications.

18.
J Nanosci Nanotechnol ; 9(7): 4442-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19916471

RESUMO

The combination of electrospinning and electrospraying techniques for the deposition of inorganic nanoparticles over polymeric nanofibers to create novel multifunctional nanomaterials has been carried out. The combination of these two techniques is essential because by conventional mixing of nanoparticles with polymers and then electrospinning resulted in nanoparticles covered by the polymer and thereby nanoparticles are unavailable for the catalysis applications. This technique is also useful to exploit the application of nanofibers for various applications. Based on the materials chosen, this technology can be applied to various applications such as protective suits, biological applications, catalysis, etc. Here the challenging task is to avoid the aggregation of nanoparticles and improve the distribution of nanoparticles over nanofibers. This was achieved by optimizing various electrospraying parameters (such as feed rate, voltage) and the dispersion properties. The dispersion in solution has been achieved by using a surfactant and optimization of silane modifier concentration and sonication time. Hydrolysis of paraoxon, a nerve agent stimulant was tested for these nanocomposite membranes by UV analysis. Decrease in absorbance was observed for these membranes with time suggesting the detoxification of nerve agent. Hence these membranes can be used as filter media in protective clothing (to detoxify chemical warfare agents to replace the existing charcoal based protection suits wherein the warfare agents are not detoxified rather adsorbed) and air filter applications.


Assuntos
Cristalização/métodos , Manufaturas/análise , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
19.
Membranes (Basel) ; 9(10)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590261

RESUMO

With the increase in demand for commodities in the world, it is advisable to conserve resources. In the case of liquid wastes generated from pharmaceutical and petroleum industries, an unconventional solution is provided for the regeneration of solvents. However, this solvent recovery can be carried out using various efficient methods. Recently, Mixed Matrix Membranes (MMM) obtained by the addition of nanoparticles into a polymer matrix as reinforcements, or using a material with a well-defined inorganic network as a membrane like zeolite, silica based, Zeolite imidazolate frameworks (ZIFs) and Metal organic frameworks (MOFs), were explored for a solvent recovery process. These membranes possess characteristics such as high selectivity, flux and stability at various environmental conditions for the solvent recovery process. In this review, we have covered the polymer, nanocomposites, and ceramic membranes for solvent recovery through the pervaporation and organic solvent nanofiltration processes. The key challenges faced by the materials such as MOFs, zeolite, silica, zeolite and ZIFs when they are fabricated (through in situ synthesis or secondary growth process) as membranes and separation of solvents to explore for the solvent recovery process are reviewed.

20.
Membranes (Basel) ; 9(3)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875842

RESUMO

Plenty of fresh water resources are still inaccessible for human use. Calamities such as pollution, climate change, and global warming pose serious threats to the fresh water system. Although many naturally and synthetically grown materials have been taken up to resolve these issues, there is still plenty of room for enhancements in technology and material perspectives to maximize resources and to minimize harm. Considering the challenges related to the purification of water, materials in the form of nanofiber membranes and nanomaterials have made tremendous contributions to water purification and filtration. Nanofiber membranes made of synthetic polymer nanofibers, ceramic membranes etc., metal oxides in various morphologies, and carbonaceous materials were explored in relation to waste removal from water. In this review, we have discussed a few key materials that have shown effectiveness in removing pollutants from waste water, enabling solutions to existing problems in obtaining clean drinking water.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa