Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(27): 16072-16082, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571915

RESUMO

The extent to which immune cell phenotypes in the peripheral blood reflect within-tumor immune activity prior to and early in cancer therapy is unclear. To address this question, we studied the population dynamics of tumor and immune cells, and immune phenotypic changes, using clinical tumor and immune cell measurements and single-cell genomic analyses. These samples were serially obtained from a cohort of advanced gastrointestinal cancer patients enrolled in a trial with chemotherapy and immunotherapy. Using an ecological population model, fitted to clinical tumor burden and immune cell abundance data from each patient, we find evidence of a strong tumor-circulating immune cell interaction in responder patients but not in those patients that progress on treatment. Upon initiation of therapy, immune cell abundance increased rapidly in responsive patients, and once the peak level is reached tumor burden decreases, similar to models of predator-prey interactions; these dynamic patterns were absent in nonresponder patients. To interrogate phenotype dynamics of circulating immune cells, we performed single-cell RNA sequencing at serial time points during treatment. These data show that peripheral immune cell phenotypes were linked to the increased strength of patients' tumor-immune cell interaction, including increased cytotoxic differentiation and strong activation of interferon signaling in peripheral T cells in responder patients. Joint modeling of clinical and genomic data highlights the interactions between tumor and immune cell populations and reveals how variation in patient responsiveness can be explained by differences in peripheral immune cell signaling and differentiation soon after the initiation of immunotherapy.


Assuntos
Comunicação Celular/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Fenótipo , Microambiente Tumoral/imunologia , Regulação da Expressão Gênica , Humanos , Fatores Imunológicos/genética , Fatores Imunológicos/imunologia , Monócitos/imunologia , Análise de Sequência de RNA , Análise de Célula Única , Linfócitos T/imunologia
2.
Tissue Eng Part C Methods ; 29(6): 257-275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183412

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a challenging disease to treat because of typically late-stage diagnoses and tumor formation in difficult-to-treat areas, sensitive to aggressive or invasive treatments. To date, HNSCC treatments have been limited to surgery, radiotherapy, and chemotherapy, which may have significant morbidity and often lead to long-lasting side effects. The development of immunotherapies has revolutionized cancer treatment by providing a promising alternative to standard-of-care therapies. However, single-agent immunotherapy has been only modestly effective in the treatment of various cancers, including HNSCC, with most patients receiving no overall benefit or increased survival. In addition, single-agent immunotherapy's limitations, namely immune-related side effects and the necessity of multidose treatments, must be addressed to further improve treatment efficacy. Biocompatible biomaterials, in combination with cancer immunotherapies, offer numerous advantages in the concentration, localization, and controlled release of drugs, cancer antigens, and immune cells. Biomaterial structures are diverse, and their design can generally be customized to enhance immunotherapy response. In preclinical settings, the use of biomaterials has shown great promise in improving the efficacy of single-agent immunotherapy. Herein, we provide an overview of current immunotherapy treatments for HNSCC and their limitations, as well as the potential applications of biomaterials in enhancing cancer immunotherapies. Impact Statement Advances in anticancer immunotherapies for the past 30 years have yielded exciting clinical results and provided alternatives to long-standing standard-of-care treatments, which are associated with significant toxicities and long-term morbidity. However, patients with head and neck squamous cell carcinoma (HNSCC) have not benefited from immunotherapies as much as patients with other cancers. Immunotherapy limitations include systemic side effects, therapeutic resistance, poor delivery kinetics, and limited patient responses. Biomaterial-enhanced immunotherapies, as explored in this review, are a potentially powerful means of achieving localized drug delivery, sustained and controlled drug release, and immunomodulation. They may overcome current treatment limitations and improve patient outcomes and care.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia/métodos , Resultado do Tratamento , Materiais Biocompatíveis
3.
Kidney Int Rep ; 8(1): 126-140, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36644348

RESUMO

Introduction: Belatacept has shown potential for prevention of rejection after kidney transplantation, given its demonstration of reduced nephrotoxicity in combination with absence of significant incidence of rejection. However, concerns have been raised regarding increased risk of viral infection. Methods: We set out to explore the impact of the switch to belatacept on alloimmune and antiviral immunity through the study of patients switched from calcineurin inhibitor (CNI) to belatacept within 3 months of kidney transplantation compared with a matched cohort of control patients on a CNI-based regimen. Results: After the switch to belatacept, immune phenotyping demonstrated a decrease in naive and an increase in terminally differentiated effector memory (TMRA) T cells, with no significant difference compared with control patients. Donor-specific immune response, measured by intracellular cytokine staining (ICS), did not change significantly either by single or double cytokine secretion, but it was associated with the appearance of donor-specific antibody (DSA) in the control but not the belatacept cohort (P = 0.039 for naive and P = 0.002 for TMRA subtypes). Increased incidence of de novo DSA development was observed in the control group (P = 0.035). Virus-specific immune response, as measured by ICS in response to cytomegalovirus (CMV) or Epstein-Barr virus (EBV), was similar in both groups and stable over time. Conclusion: We found that belatacept use was associated with an absence of alloreactivity without impact on immune phenotype, while preserving the antiviral immune response, for patients switched from a CNI-based regimen. In parallel, the antiviral immune response against CMV and EBV was preserved after the belatacept switch (clinicaltrials.gov: NCT01953120).

4.
Hum Immunol ; 83(4): 273-280, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35190203

RESUMO

Older kidney transplant recipients demonstrate increased rates of infection, and lower rates of rejection, compared with younger kidney transplant recipients. However, the mechanism behind this observation remains unknown. To develop a multifaceted view of age-associated immune dysfunction, we determined the function and phenotype of T cells predisposing to vulnerability to infection on a molecular level. Overlapping peptide pools representing the dominant CMV antigens were used to stimulate PBMC collected from 51 kidney transplant recipients, using cytokine secretion to determine specificity and intensity of response. Staphylococcal endotoxin B (SEB) was analyzed in parallel. To define immune cell subsets, we used single cell RNA sequencing (scRNAseq) to evaluate cellular surface markers and gene expression. We found increased frequency of SEB- and CMV-specific T cells was associated with freedom from infection, especially in older patients. Spatialized t-SNE analysis revealed decreased frequency of naïve T cells, increased frequency of TEMRA cells, and decreased frequency of IFNγ secreting T cells in patients with infection. Application of scRNAseq analysis revealed increased frequency of terminally differentiated T cells expressing NK-associated receptors and inhibitory markers. These findings offer unique insight into the mechanism behind vulnerability to infection in the kidney transplant recipient, revealing a specific T cell subtype of impaired antigen response and terminal effector phenotype as markers of T cell senescence.


Assuntos
Infecções por Citomegalovirus , Transplante de Rim , Idoso , Biomarcadores , Senescência Celular , Humanos , Leucócitos Mononucleares , Linfócitos T , Transplantados
5.
JCI Insight ; 6(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34609965

RESUMO

CMV causes mostly asymptomatic but lifelong infection. Primary infection or reactivation in immunocompromised individuals can be life-threatening. CMV viremia often occurs in solid organ transplant recipients and associates with decreased graft survival and higher mortality. Furthering understanding of impaired immunity that allows CMV reactivation is critical to guiding antiviral therapy and examining the effect of CMV on solid organ transplant outcomes. This study characterized longitudinal immune responses to CMV in 31 kidney transplant recipients with CMV viremia and matched, nonviremic recipients. Recipients were sampled 3 and 12 months after transplant, with additional samples 1 week and 1 month after viremia. PBMCs were stained for NK and T cell markers. PBMC transcriptomes were characterized by RNA-Seq. Plasma proteins were quantified by Luminex. CD8+ T cell transcriptomes were characterized by single-cell RNA-Seq. Before viremia, patients had high levels of IL-15 with concurrent expansion of immature CD56bright NK cells. After viremia, mature CD56dim NK cells and CD28-CD8+ T cells upregulating inhibitory and NK-associated receptors were expanded. Memory NK cells and NK-like CD28-CD8+ T cells were associated with control of viremia. These findings suggest that signatures of innate activation may be prognostic for CMV reactivation after transplant, while CD8+ T cell functionality is critical for effective control of CMV.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/etiologia , Transplante de Rim/efeitos adversos , Células Matadoras Naturais/imunologia , Viremia/imunologia , Adulto , Idoso , Infecções por Citomegalovirus/fisiopatologia , Feminino , Humanos , Transplante de Rim/métodos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
6.
Nat Cancer ; 1(12): 1167-1175, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121931

RESUMO

Human leukocyte antigen (HLA)-B has been recognized as a major determinant of discrepancies in disease outcomes, and recent evidence indicates a role in immune checkpoint blockade (ICB) efficacy. The B44 supertype, which features an electropositive binding pocket that preferentially displays peptides with negatively charged amino acid anchors, is associated with improved survival in ICB-treated melanoma. Yet this effect was not seen in ICB-treated non-small-cell lung cancer (NSCLC). Here we show that mutations leading to glutamic acid substitutions occur more often in melanoma than NSCLC based on mutational landscape. We additionally show stratifying B44 based on the presence of somatic mutations that lead to negatively charged glutamic acid anchors identifies patients with NSCLC with an ICB benefit similar to that seen in melanoma. We anticipate these findings could improve assessment of HLA-related outcomes and prediction of ICB benefit in those with B44, representing approximately half of the world's population.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Carcinoma Pulmonar de Células não Pequenas/genética , Ácido Glutâmico/genética , Antígenos HLA-B/genética , Antígeno HLA-B44/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/genética , Melanoma/genética , Mutação
7.
Hum Immunol ; 80(2): 126-134, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30445099

RESUMO

Noninvasive immunologic analysis of peripheral blood holds promise for explaining the mechanism of development of adverse clinical outcomes, and may also become a method for patient risk stratification before or after mechanical circulatory support device (MCSD) implantation. Dysregulation of the innate immune system is associated with increased patient age but has yet to be evaluated in the older patient with advanced heart failure undergoing MCSD surgery. Patients pre- and post-MCSD implantation had peripheral blood mononuclear cells (PBMC) and serum isolated. Multiparameter flow cytometry was used to analyze markers of innate cell function, including monocyte subtypes. Multiplex cytokine analysis was performed. MELD-XI and SOFA scores were utilized as surrogate markers of outcomes. Increased levels of pro-inflammatory cytokines including IL-15, TNF-α, and IL-10 were associated with increased MELD-XI and SOFA scores. IL-8, TNF- α, and IL-10 were associated with risk of death after MCSD implantation, even with correction for patient age. Increased frequency of 'classical' monocytes (CD14 + CD16-) were associated with increased MELD-XI and SOFA scores. This suggests that inflammation and innate immune system activation contribute to progression to multiorgan system failure and death after MCSD surgery. Development of noninvasive monitoring of peripheral blood holds promise for biomarker development for candidate selection and patient risk stratification.


Assuntos
Fatores Etários , Procedimentos Cirúrgicos Cardíacos , Insuficiência Cardíaca/cirurgia , Coração Auxiliar , Monócitos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Feminino , Insuficiência Cardíaca/mortalidade , Humanos , Imunidade Inata , Mediadores da Inflamação/sangue , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Resultado do Tratamento
8.
Mucosal Immunol ; 12(2): 457-467, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29695840

RESUMO

Microbial metabolites are an emerging class of mediators influencing CD4+ T-cell function. To advance the understanding of direct causal microbial factors contributing to Crohn's disease, we screened 139 predicted Crohn's disease-associated microbial metabolites for their bioactivity on human CD4+ T-cell functions induced by disease-associated T helper 17 (Th17) polarizing conditions. We observed 15 metabolites with CD4+ T-cell bioactivity, 3 previously reported, and 12 unprecedented. A deeper investigation of the microbe-derived metabolite, ascorbate, revealed its selective inhibition on activated human CD4+ effector T cells, including IL-17A-, IL-4-, and IFNγ-producing cells. Mechanistic assessment suggested the apoptosis of activated human CD4+ T cells associated with selective inhibition of energy metabolism. These findings suggest a substantial rate of relevant T-cell bioactivity among Crohn's disease-associated microbial metabolites, and evidence for novel modes of bioactivity, including targeting of T-cell energy metabolism.


Assuntos
Ácido Ascórbico/metabolismo , Doença de Crohn/microbiologia , Microbiota/imunologia , Células Th17/imunologia , Apoptose , Diferenciação Celular , Respiração Celular , Células Cultivadas , Doença de Crohn/imunologia , Metabolismo Energético , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária , Programas de Rastreamento
9.
J Vis Exp ; (126)2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28829424

RESUMO

Within the innate immune system, effector lymphocytes known as natural killer (NK) cells play an essential role in host defense against aberrant cells, specifically eliminating tumoral and virally infected cells. Approximately 30 known monogenic defects, together with a host of other pathological conditions, cause either functional or classic NK cell deficiency, manifesting in reduced or absent cytotoxic activity. Historically, cytotoxicity has been investigated with radioactive methods, which are cumbersome, expensive and potentially hazardous. This article describes a streamlined, clinically applicable flow cytometry-based method to quantify NK cell cytotoxic activity. In this assay, peripheral blood mononuclear cells (PBMCs) or purified NK cell preparations are co-incubated at different ratios with a target tumor cell line known to be sensitive to NK cell-mediated cytotoxicity (NKCC). The target cells are pre-labeled with a fluorescent dye to allow their discrimination from the effector cells (NK cells). After the incubation period, killed target cells are identified by a nucleic acid stain, which specifically permeates dead cells. This method is amenable to both diagnostic and research applications and, thanks to the multi-parameter capabilities of flow cytometry, has the added advantage of potentially enabling a deeper analysis of NK cell phenotype and function.


Assuntos
Testes Imunológicos de Citotoxicidade/métodos , Citometria de Fluxo/métodos , Células Matadoras Naturais/imunologia , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa