Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513841

RESUMO

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Assuntos
Acetilcisteína , Metabolismo Energético , Lesão Pulmonar , Mecloretamina , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Mecloretamina/toxicidade , Masculino , Metabolismo Energético/efeitos dos fármacos , Ratos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Ratos Sprague-Dawley , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Substâncias para a Guerra Química/toxicidade
2.
Part Fibre Toxicol ; 20(1): 16, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088832

RESUMO

BACKGROUND: Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE: The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS: Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS: Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17ß-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS: These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.


Assuntos
Nylons , Pneumonia , Humanos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Nylons/toxicidade , Microplásticos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Dilatação , Aerossóis e Gotículas Respiratórios , Pneumonia/induzido quimicamente , Pulmão , Inflamação/induzido quimicamente , Tamanho da Partícula , Líquido da Lavagem Broncoalveolar
3.
Toxicol Appl Pharmacol ; 456: 116257, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174670

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Alveolar Type II cells are primarily responsible for surfactant production; they also play a key role in lung repair following injury. Herein, we assessed the effects of NM on Type II cell activity. Male Wistar rats were administered NM (0.125 mg/kg) or PBS control intratracheally. Type II cells, lung tissue and BAL were collected 3 d later. NM exposure resulted in double strand DNA breaks in Type II cells, as assessed by expression of γH2AX; this was associated with decreased expression of the DNA repair protein, PARP1. Expression of HO-1 was upregulated and nitrotyrosine residues were noted in Type II cells after NM exposure indicating oxidative stress. NM also caused alterations in Type II cell energy metabolism; thus, both glycolysis and oxidative phosphorylation were reduced; there was also a shift from a reliance on oxidative phosphorylation to glycolysis for ATP production. This was associated with increased expression of pro-apoptotic proteins activated caspase-3 and -9, and decreases in survival proteins, ß-catenin, Nur77, HMGB1 and SOCS2. Intracellular signaling molecules important in Type II cell activity including PI3K, Akt2, phospho-p38 MAPK and phospho-ERK were reduced after NM exposure. This was correlated with dysregulation of surfactant protein production and impaired pulmonary functioning. These data demonstrate that Type II cells are targets of NM-induced DNA damage and oxidative stress. Impaired functioning of these cells may contribute to pulmonary toxicity caused by mustards.


Assuntos
Lesão Pulmonar Aguda , Mecloretamina , Ratos , Masculino , Animais , Mecloretamina/toxicidade , Ratos Wistar , Lesão Pulmonar Aguda/induzido quimicamente , Células Epiteliais Alveolares , Estresse Oxidativo , Metabolismo Energético , Tensoativos/efeitos adversos
4.
Toxicol Appl Pharmacol ; 428: 115677, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390737

RESUMO

Sulfur mustard (SM) is a bifunctional alkylating agent that causes severe injury to the respiratory tract. This is accompanied by an accumulation of macrophages in the lung and the release of the proinflammatory cytokine, tumor necrosis factor (TNF)α. In these studies, we analyzed the effects of blocking TNFα on lung injury, inflammation and oxidative stress induced by inhaled SM. Rats were treated with SM vapor (0.4 mg/kg) or air control by intratracheal inhalation. This was followed 15-30 min later by anti-TNFα antibody (15mg/kg, i.v.) or PBS control. Animals were euthanized 3 days later. Anti-TNFα antibody was found to blunt SM-induced peribronchial edema, perivascular inflammation and alveolar plasma protein and inflammatory cell accumulation in the lung; this was associated with reduced expression of PCNA in histologic sections and decreases in BAL levels of fibrinogen. SM-induced increases in inflammatory proteins including soluble receptor for glycation end products, its ligand, high mobility group box-1, and matrix metalloproteinase-9 were also reduced by anti-TNFα antibody administration, along with increases in numbers of lung macrophages expressing TNFα, cyclooxygenase-2 and inducible nitric oxide synthase. This was correlated with reduced oxidative stress as measured by expression of heme oxygenase-1 and Ym-1. Together, these data suggest that inhibiting TNFα may represent an efficacious approach to mitigating acute lung injury, inflammatory macrophage activation, and oxidative stress induced by inhaled sulfur mustard.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Gás de Mostarda/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Substâncias para a Guerra Química/toxicidade , Exposição por Inalação/efeitos adversos , Masculino , Gás de Mostarda/administração & dosagem , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
5.
Toxicol Appl Pharmacol ; 387: 114798, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678244

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Herein, we developed a murine model of NM-induced pulmonary toxicity with the goal of assessing inflammatory mechanisms of injury. C57BL/6J mice were euthanized 1-28 d following intratracheal exposure to NM (0.08 mg/kg) or PBS control. NM caused progressive alveolar epithelial thickening, perivascular inflammation, bronchiolar epithelial hyperplasia, interstitial fibroplasia and fibrosis, peaking 14 d post exposure. Enlarged foamy macrophages were also observed in the lung 14 d post NM, along with increased numbers of microparticles in bronchoalveolar lavage fluid (BAL). Following NM exposure, rapid and prolonged increases in BAL cells, protein, total phospholipids and surfactant protein (SP)-D were also detected. Flow cytometric analysis showed that CD11b+Ly6G-F4/80+Ly6Chi proinflammatory macrophages accumulated in the lung after NM, peaking at 3 d. This was associated with macrophage expression of HMGB1 and TNFα in histologic sections. CD11b+Ly6G-F4/80+Ly6Clo anti-inflammatory/pro-fibrotic macrophages also increased in the lung after NM peaking at 14 d, a time coordinate with increases in TGFß expression and fibrosis. NM exposure also resulted in alterations in pulmonary mechanics including increases in tissue elastance and decreases in compliance and static compliance, most prominently at 14 d. These findings demonstrate that NM induces structural and inflammatory changes in the lung that correlate with aberrations in pulmonary function. This mouse model will be useful for mechanistic studies of mustard lung injury and for assessing potential countermeasures.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Substâncias para a Guerra Química/toxicidade , Pulmão/patologia , Mecloretamina/toxicidade , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Fibrose , Humanos , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos
6.
Exp Mol Pathol ; 102(1): 50-58, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986442

RESUMO

Exposure to World Trade Center (WTC) dust has been linked to respiratory disease in humans. In the present studies we developed a rodent model of WTC dust exposure to analyze lung oxidative stress and inflammation, with the goal of elucidating potential epigenetic mechanisms underlying these responses. Exposure of mice to WTC dust (20µg, i.t.) was associated with upregulation of heme oxygenase-1 and cyclooxygenase-2 within 3days, a response which persisted for at least 21days. Whereas matrix metalloproteinase was upregulated 7days post-WTC dust exposure, IL-6RA1 was increased at 21days; conversely, expression of mannose receptor, a scavenger receptor important in particle clearance, decreased. After WTC dust exposure, increases in methylation of histone H3 lysine K4 at 3days, lysine K27 at 7days and lysine K36, were observed in the lung, along with hypermethylation of Line-1 element at 21days. Alterations in pulmonary mechanics were also observed following WTC dust exposure. Thus, 3days post-exposure, lung resistance and tissue damping were decreased. In contrast at 21days, lung resistance, central airway resistance, tissue damping and tissue elastance were increased. These data demonstrate that WTC dust-induced inflammation and oxidative stress are associated with epigenetic modifications in the lung and altered pulmonary mechanics. These changes may contribute to the development of WTC dust pathologies.


Assuntos
Poluentes Atmosféricos/toxicidade , Poeira , Epigênese Genética , Inflamação/diagnóstico , Estresse Oxidativo , Animais , Western Blotting , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Metilação de DNA/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Inflamação/etiologia , Inflamação/genética , Exposição por Inalação , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiopatologia , Lisina/metabolismo , Metaloproteinases da Matriz/metabolismo , Metilação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ataques Terroristas de 11 de Setembro , Regulação para Cima/efeitos dos fármacos
7.
Toxicol Appl Pharmacol ; 305: 1-11, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27212445

RESUMO

Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.


Assuntos
Substâncias para a Guerra Química/toxicidade , Irritantes/toxicidade , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/terapia , Gás de Mostarda/toxicidade , Animais , Fibrina/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Metaloproteinases da Matriz/metabolismo , Células-Tronco Mesenquimais , RNA não Traduzido , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Toxicol Appl Pharmacol ; 284(2): 236-45, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25724551

RESUMO

Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24-72h after exposure (3h) of WT and Gal-3(-/-) mice to air or 0.8ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3(+), iNOS(+)) and anti-inflammatory (MR-1(+)) macrophages in the lungs. While accumulation of iNOS(+) macrophages was attenuated in Gal-3(-/-) mice, increased numbers of enlarged MR-1(+) macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b(+) and consisted mainly (>97%) of mature (F4/80(+)CD11c(+)) proinflammatory (Ly6GLy6C(hi)) and anti-inflammatory (Ly6GLy6C(lo)) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C(hi) macrophages, with no effect on Ly6C(lo) macrophages. CD11b(+)Ly6G(+)Ly6C(+) granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3(-/-) mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3(-/-) mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure.


Assuntos
Galectina 3/metabolismo , Galectinas/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Ozônio/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Animais , Feminino , Galactosídeos/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo
9.
Annu Rev Pharmacol Toxicol ; 51: 267-88, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20887196

RESUMO

The past several years have seen the accumulation of evidence demonstrating that tissue injury induced by diverse toxicants is due not only to their direct effects on target tissues but also indirectly to the actions of resident and infiltrating macrophages. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity, which function to fight infections, limit tissue injury, and promote wound healing. However, following exposure to toxicants, macrophages can become hyperresponsive, resulting in uncontrolled or dysregulated release of mediators that exacerbate acute tissue injury and/or promote the development of chronic diseases such as fibrosis and cancer. Evidence suggests that the diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the precise roles of these different macrophage populations in the pathogenic response to toxicants is key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair.


Assuntos
Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Xenobióticos/toxicidade , Animais , Fibrose/fisiopatologia , Humanos , Inflamação/etiologia , Inflamação/fisiopatologia , Macrófagos/efeitos dos fármacos , Neoplasias/fisiopatologia , Cicatrização/fisiologia
10.
Exp Mol Pathol ; 97(1): 89-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24886962

RESUMO

Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.


Assuntos
Lesão Pulmonar Aguda/patologia , Mecloretamina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pentoxifilina/farmacologia , Pneumonia/induzido quimicamente , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Substâncias para a Guerra Química/toxicidade , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/metabolismo , Irritantes/toxicidade , Lipocalina-2 , Lipocalinas/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pneumonia/tratamento farmacológico , Ratos , Ratos Wistar , Receptores CXCR3/metabolismo
11.
Toxicol Appl Pharmacol ; 263(2): 195-202, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22727909

RESUMO

Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3h) resulted in increased expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24h, expression of HO-1 was biphasic increasing after 3h and 48-72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein-1, inducible nitric oxide synthase and cyclooxygenase-2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/genética , Feminino , Heme Oxigenase-1/genética , Inflamação/induzido quimicamente , Inflamação/patologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Ozônio/administração & dosagem , Ozônio/toxicidade , Proteína C/genética , Ratos , Ratos Wistar , Fatores de Tempo
12.
Toxicol Appl Pharmacol ; 261(1): 22-30, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22446026

RESUMO

Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS-/- mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS-/- mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS-/- mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS-/- mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS-/- mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning.


Assuntos
Inflamação/fisiopatologia , Lesão Pulmonar/fisiopatologia , Gás de Mostarda/análogos & derivados , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Proteínas de Fase Aguda/genética , Animais , Substâncias para a Guerra Química/toxicidade , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipocalina-2 , Lipocalinas/genética , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gás de Mostarda/toxicidade , Óxido Nítrico Sintase Tipo II/genética , Proteínas Oncogênicas/genética , Estresse Oxidativo/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética
13.
Toxicol Sci ; 187(1): 162-174, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35201360

RESUMO

Ozone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in increases in bronchoalveolar lavage fluid EVs, which were comprised predominantly of microvesicles (MVs). NanoFACS analysis revealed that MVs generated following both air and ozone exposure was largely from CD45+ myeloid cells; these MVs were readily taken up by macrophages. Functionally, MVs from ozone, but not air treated mice, upregulated mRNA expression of inflammatory proteins in macrophages including inducible nitric oxide synthase (iNOS), CXCL-1, CXCL-2, and interleukin (IL)-1ß. The miRNA profile of MVs in bronchoalveolar lavage fluid (BALF) was altered after ozone exposure; thus, increases in miR-21, miR-145, miR320a, miR-155, let-7b, miR744, miR181, miR-17, miR-92a, and miR-199a-3p were observed, whereas miR-24-3p and miR-20 were reduced. Ingenuity pathway analysis revealed that these miRNAs regulate pathways that promote inflammatory macrophage activation, and predicted that let-7a-5p/let-7b, miR-24-3p, miR-21-5p, miR-17, and miR-181a-5p are key upstream regulators of inflammatory proteins. After ozone exposure, miR-199a-3p, but not precursor miR-199a-3p, was increased in lung macrophages, indicating that it is derived from MV-mediated delivery. Furthermore, lung macrophage mRNA expression of IL-1ß was upregulated after administration of MVs containing miR-199a-3p mimic but downregulated by miR-199a-3p inhibitor. Collectively, these data suggest that MVs generated following ozone exposure contribute to proinflammatory macrophage activation via MV-derived miRNAs including miR-199a-3p. These findings identify a novel pathway regulating macrophage inflammatory responses to inhaled ozone.


Assuntos
MicroRNAs , Ozônio , Animais , Pulmão/metabolismo , Ativação de Macrófagos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Ozônio/toxicidade , RNA Mensageiro/metabolismo
14.
Toxicol Appl Pharmacol ; 250(1): 10-8, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20883710

RESUMO

Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.


Assuntos
Mediadores da Inflamação/metabolismo , Irritantes/toxicidade , Pulmão/efeitos dos fármacos , Mecloretamina/toxicidade , Animais , Ciclo-Oxigenase 2/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos
15.
Toxicol Appl Pharmacol ; 250(3): 245-55, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21070800

RESUMO

Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNFα (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNFα mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNFα signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.


Assuntos
Irritantes/toxicidade , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Gás de Mostarda/análogos & derivados , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Pulmão/fisiopatologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Gás de Mostarda/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/fisiologia
16.
Pulm Pharmacol Ther ; 24(1): 92-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20851203

RESUMO

Sulfur mustard (SM) is highly toxic to the lung inducing both acute and chronic effects including upper and lower obstructive disease, airway inflammation, and acute respiratory distress syndrome, and with time, tracheobronchial stenosis, bronchitis, and bronchiolitis obliterans. Thus it is essential to identify effective strategies to mitigate the toxicity of SM and related vesicants. Studies in animals and in cell culture models have identified key mechanistic pathways mediating their toxicity, which may be relevant targets for the development of countermeasures. For example, following SM poisoning, DNA damage, apoptosis, and autophagy are observed in the lung, along with increased expression of activated caspases and DNA repair enzymes, biochemical markers of these activities. This is associated with inflammatory cell accumulation in the respiratory tract and increased expression of tumor necrosis factor-α and other proinflammatory cytokines, as well as reactive oxygen and nitrogen species. Matrix metalloproteinases are also upregulated in the lung after SM exposure, which are thought to contribute to the detachment of epithelial cells from basement membranes and disruption of the pulmonary epithelial barrier. Findings that production of inflammatory mediators correlates directly with altered lung function suggests that they play a key role in toxicity. In this regard, specific therapeutic interventions currently under investigation include anti-inflammatory agents (e.g., steroids), antioxidants (e.g., tocopherols, melatonin, N-acetylcysteine, nitric oxide synthase inhibitors), protease inhibitors (e.g., doxycycline, aprotinin, ilomastat), surfactant replacement, and bronchodilators. Effective treatments may depend on the extent of lung injury and require a multi-faceted pharmacological approach.


Assuntos
Pulmão/efeitos dos fármacos , Gás de Mostarda/toxicidade , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Humanos , Modelos Animais , Inibidores de Proteases/uso terapêutico , Surfactantes Pulmonares/uso terapêutico
17.
Toxicol Appl Pharmacol ; 248(2): 89-99, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20659490

RESUMO

Inhalation of sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating its cytotoxic effects are unknown and were investigated in the present studies. Male rats Crl:CD(SD) were anesthetized, and then intratracheally intubated and exposed to 0.7-1.4mg/kg SM by vapor inhalation. Animals were euthanized 6, 24, 48h or 7days post-exposure and bronchoalveolar lavage fluid (BAL) and lung tissue collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including focal ulceration and detachment of the trachea and bronchial epithelia from underlying mucosa, thickening of alveolar septal walls and increased numbers of inflammatory cells in the tissue. There was also evidence of autophagy and apoptosis in the tissue. This was correlated with increased BAL protein content, a marker of injury to the alveolar epithelial lining. SM exposure also resulted in increased expression of markers of inflammation including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNFα), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9), each of which has been implicated in pulmonary toxicity. Whereas COX-2, TNFα and iNOS were mainly localized in alveolar regions, MMP-9 was prominent in bronchial epithelium. In contrast, expression of the anti-oxidant hemeoxygenase, and the anti-inflammatory collectin, surfactant protein-D, decreased in the lung after SM exposure. These data demonstrate that SM-induced oxidative stress and injury are associated with the generation of cytotoxic inflammatory proteins which may contribute to the pathogenic response to this vesicant.


Assuntos
Pulmão/efeitos dos fármacos , Gás de Mostarda/toxicidade , Pneumonia/induzido quimicamente , Animais , Antioxidantes/metabolismo , Apoptose , Autofagia , Líquido da Lavagem Broncoalveolar , Substâncias para a Guerra Química , Pulmão/enzimologia , Pulmão/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Pneumonia/enzimologia , Pneumonia/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
18.
Res Rep Health Eff Inst ; (151): 3-31, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21381634

RESUMO

It is well established that exposure to ambient fine particulate matter (PM), defined as PM < or = 2.5 microm in aerodynamic diameter (PM2.5), is associated with increased cardiovascular morbidity and mortality and that elderly persons are particularly susceptible to these effects. We speculated that the increased susceptibility of elderly persons to PM is due to altered production of inflammatory mediators and antioxidants in the lung. We performed pilot studies in an animal model to test this hypothesis. For these studies we used diesel exhaust (DE), a major component of urban PM, as a model. Two groups of male CB6F1 mice, 2 months and 18 months old, (referred to in this report as young and old mice, respectively) were exposed to DE at 300 or 1000 microg/m3 PM (referred to as low- or high-dose DE, respectively), or to filtered air as a control, for one 3-hour period (single exposure) or for 3 hours on each of three consecutive days (repeated exposure). Mice were killed and bronchoalveolar lavage (BAL) fluid, serum, and lung tissue were collected immediately after exposure (0 hours) and 24 hours after the final exposure. After single or repeated exposure to DE, persistent structural alterations and inflammation were observed in the lungs of old mice. These changes consisted of patchy thickening of alveolar septa and an increase in the number of neutrophils and macrophages in alveolar spaces. In the young mice, in contrast, no major alterations in lung histology were noted. In old but not in young mice, significant increases in messenger RNA (mRNA) expression of the oxidative-stress marker lipocalin 24p3 were also observed. In both young and old mice, exposure to DE was associated with increased expression of tumor necrosis factor alpha (TNF-alpha) mRNA in the lung. However, this response was attenuated in old mice. Exposure to high-dose DE resulted in significant increases in interleukin (IL)-6 and IL-8 mRNA expression in the lungs of old animals; these increases persisted for 24 hours. Whereas IL-6 was also up-regulated in young mice after DE exposure, no major effects were evident on the expression of IL-8 mRNA. Expression of the antioxidant enzyme manganese superoxide dismutase (MnSOD) was decreased in lung tissue from young animals after single or repeated exposure to DE. In contrast, constitutive expression of MnSOD was not evident in lungs of old mice, and DE had no effect on the expression of this antioxidant. These preliminary data confirm that old mice are more sensitive to DE than young mice and that increased sensitivity is associated with altered expression of inflammatory cytokines and the antioxidant MnSOD. These aberrations may contribute to the increased susceptibility of old mice to inhaled PM.


Assuntos
Pneumopatias/induzido quimicamente , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Administração por Inalação , Fatores Etários , Animais , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Masculino , Camundongos , Neutrófilos , Tamanho da Partícula , Material Particulado/análise , Projetos Piloto , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/metabolismo , Emissões de Veículos/análise
19.
Toxicol Sci ; 178(2): 358-374, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002157

RESUMO

Sulfur mustard (SM) inhalation causes debilitating pulmonary injury in humans which progresses to fibrosis. Herein, we developed a rat model of SM toxicity which parallels pathological changes in the respiratory tract observed in humans. SM vapor inhalation caused dose (0.2-0.6 mg/kg)-related damage to the respiratory tract within 3 days of exposure. At 0.4-0.6 mg/kg, ulceration of the proximal bronchioles, edema and inflammation were observed, along with a proteinaceous exudate containing inflammatory cells in alveolar regions. Time course studies revealed that the pathologic response was biphasic. Thus, changes observed at 3 days post-SM were reduced at 7-16 days; this was followed by more robust aberrations at 28 days, including epithelial necrosis and hyperplasia in the distal bronchioles, thickened alveolar walls, enlarged vacuolated macrophages, and interstitial fibrosis. Histopathologic changes were correlated with biphasic increases in bronchoalveolar lavage (BAL) cell and protein content and proliferating cell nuclear antigen expression. Proinflammatory proteins receptor for advanced glycation end product (RAGE), high-mobility group box protein (HMGB)-1, and matrix metalloproteinase (MMP)-9 also increased in a biphasic manner following SM inhalation, along with surfactant protein-D (SP-D). Tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS), inflammatory proteins implicated in mustard lung toxicity, and the proinflammatory/profibrotic protein, galectin (Gal)-3, were upregulated in alveolar macrophages and in bronchiolar regions at 3 and 28 days post-SM. Inflammatory changes in the lung were associated with oxidative stress, as reflected by increased expression of heme oxygenase (HO)-1. These data demonstrate a similar pathologic response to inhaled SM in rats and humans suggesting that this rodent model can be used for mechanistic studies and for the identification of efficacious therapeutics for mitigating toxicity.


Assuntos
Substâncias para a Guerra Química , Lesão Pulmonar , Gás de Mostarda , Animais , Substâncias para a Guerra Química/toxicidade , Fibrose , Inflamação/patologia , Pulmão/efeitos dos fármacos , Lesão Pulmonar/patologia , Gás de Mostarda/toxicidade , Estresse Oxidativo , Ratos
20.
Toxicol Appl Pharmacol ; 241(3): 283-93, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19729031

RESUMO

Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 microg/m(3)) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFalpha) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE.


Assuntos
Envelhecimento/fisiologia , Pneumopatias/induzido quimicamente , Emissões de Veículos/toxicidade , Aerossóis , Animais , Antioxidantes/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , L-Lactato Desidrogenase/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Masculino , Camundongos , Óxidos de Nitrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa