Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 17(1): 21-28, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180775

RESUMO

Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.

2.
Phys Rev Lett ; 120(15): 156401, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756894

RESUMO

We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe_{2} by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe_{2} with its sister compound PtSe_{2}, we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p-orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.

3.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081228

RESUMO

We describe an optical method to directly measure the position-dependent thermal diffusivity of reflective single crystal samples across a broad range of temperatures for condensed matter physics research. Two laser beams are used, one as a source to locally modulate the sample temperature, and the other as a probe of sample reflectivity, which is a function of the modulated temperature. Thermal diffusivity is obtained from the phase delay between source and probe signals. We combine this technique with a microscope setup in an optical cryostat, in which the sample is placed on a three-axis piezo-stage, allowing for spatially resolved measurements. Furthermore, we demonstrate experimentally and mathematically that isotropic in-plane diffusivity can be obtained when overlapping the two laser beams instead of separating them in the traditional way, which further enhances the spatial resolution to a micron scale, especially valuable when studying inhomogeneous or multidomain samples. We discuss in detail the experimental conditions under which this technique is valuable and demonstrate its performance on two stoichiometric bilayer ruthenates: Sr3Ru2O7 and Ca3Ru2O7. The spatial resolution allowed us to study the diffusivity in single domains of the latter, and we uncovered a temperature-dependent in-plane diffusivity anisotropy. Finally, we used the enhanced spatial resolution enabled by overlapping the two beams to measure the temperature-dependent diffusivity of Ti-doped Ca3Ru2O7, which exhibits a metal-insulator transition. We observed large variations of transition temperature over the same sample, originating from doping inhomogeneity and pointing to the power of spatially resolved techniques in accessing inherent properties.

4.
Sci Adv ; 6(6): eaaz0611, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128385

RESUMO

A nearly free electron metal and a Mott insulating state can be thought of as opposite ends of the spectrum of possibilities for the motion of electrons in a solid. Understanding their interaction lies at the heart of the correlated electron problem. In the magnetic oxide metal PdCrO2, nearly free and Mott-localized electrons exist in alternating layers, forming natural heterostructures. Using angle-resolved photoemission spectroscopy, quantitatively supported by a strong coupling analysis, we show that the coupling between these layers leads to an "intertwined" excitation that is a convolution of the charge spectrum of the metallic layer and the spin susceptibility of the Mott layer. Our findings establish PdCrO2 as a model system in which to probe Kondo lattice physics and also open new routes to use the a priori nonmagnetic probe of photoemission to gain insights into the spin susceptibility of correlated electron materials.

6.
Nat Commun ; 7: 11711, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27210515

RESUMO

Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge-density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterized by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi-surface spin texture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa