Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(15): 2559-2597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34542351

RESUMO

Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Aminoácidos , Insulina
2.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012230

RESUMO

Ovarian cancer is a non-homogenous malignancy. High-grade serous carcinoma (HGSC) is the most common subtype, and its drug resistance mechanisms remain unclear. Despite the advantages of modern pharmacotherapy, high-grade ovarian cancer is associated with a poor prognosis and research into targeted therapies is in progress. The aim of the study was to assess the dominant energy substrate transport mechanism in ovarian cancer cells and to verify whether genomic aberrations could predict clinical outcomes using the Cancer Genome Atlas (TCGA) dataset. Total RNA was extracted from HGSC frozen tissues, and the expression of selected genes was compared to respective controls. GLUT1, FABPpm, MCT4 and SNAT1 genes were significantly overexpressed in carcinomas compared with controls, while expression of CD36/SR-B2, FATP1, FABP4, GLUT4, ASCT2 and LPL was decreased. No differences were found in FATP4, LAT1, MCT1 and FASN. The transcript content of mitochondrial genes such as PGC-1α, TFAM and COX4/1 was similar between groups, while the ß-HAD level declined in ovarian cancer. Additionally, the MCT4 level was reduced and PGC-1α was elevated in cancer tissue from patients with 'small' primary tumor and omental invasion accompanied by ascites as compared to patients that exhibited greater tendencies to metastasize to lymph nodes with clear omentum. Based on TCGA, higher FABP4 and LPL and lower TFAM expression indicated poorer overall survival in patients with ovarian cancer. In conclusion, the presented data show that there is no exclusive energy substrate in HGSC. However, this study indicates the advantage of glucose and lactate transport over fatty acids, thereby suggesting potential therapeutic intervention targets to impede ovarian cancer growth.


Assuntos
Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Feminino , Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Neoplasias Ovarianas/patologia
3.
Int J Mol Sci ; 21(21)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171690

RESUMO

Pyrroloquinoline quinone (PQQ) is a novel stimulator of mitochondrial biogenesis and cellular energy metabolism. This is the first study investigating regulatory mechanisms and metabolic responses underlying PQQ's action in palmitate-exposed L6 myotubes. Particularly, we assessed alterations in lipid content and composition, expression of metabolic enzymes, and changes in glucose transport. The experiments were conducted using muscle cells subjected to short (2 h) and prolonged (24 h) incubation with PQQ in a sequence of pre- and post-palmitic acid (PA) exposure. We demonstrated the opposite effects of 2 and 24 h treatments with PQQ on lipid content, i.e., a decline in the level of free fatty acids and triacylglycerols in response to short-time PQQ incubation as compared to increases in diacylglycerol and triacylglycerol levels observed after 24 h. We did not demonstrate a significant impact of PQQ on fatty acid transport. The analysis of metabolic enzyme expression showed that the vast majority of PQQ-dependent alterations cumulated in the PA/PQQ 24 h group, including elevated protein amount of peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α), sirtuin-1 (SIRT1), phosphorylated 5'AMP-activated protein kinase (pAMPK), carnitine palmitoyltransferase I (CPT1), citrate synthase (CS), fatty acid synthase (FAS), and serine palmitoyltransferase, long chain base subunit 1 (SPT1). In conclusion, the results mentioned above indicate PQQ-dependent activation of both fatty acid oxidation and lipid synthesis in order to adapt cells to palmitic acid-rich medium, although PQQ did not attenuate insulin resistance in muscle cells.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Cofator PQQ/farmacologia , Ácido Palmítico/farmacologia , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular , Diglicerídeos/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Resistência à Insulina , Cofator PQQ/administração & dosagem , Ácido Palmítico/administração & dosagem , Ácido Palmítico/farmacocinética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Esfingolipídeos/metabolismo , Triglicerídeos/metabolismo
4.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137990

RESUMO

Both positive and negative aspects of sport performance are currently considered. The aim of our study was to determine time- and intensity-dependent effects of a single exercise bout on redox and inflammatory status. The experiment was performed on 40 male Wistar rats subjected to treadmill running for 30 min with the speed of 18 m/min (M30) or 28 m/min (F30), or for 2 h with the speed of 18 m/min (M120). Immunoenzymatic and spectrophotometric methods were applied to assess the levels of pro-inflammatory and anti-inflammatory cytokines, chemokines, growth factors, the antioxidant barrier, redox status, oxidative damage products, nitrosative stress, and their relationships with plasma non-esterified fatty acids. Treadmill running caused a reduction in the content of monocyte chemoattractant protein-1 (MCP1) and nitric oxide (M30, M120, F30 groups) as well as macrophage inflammatory protein-1α (MIP-1α) and regulated on activation, normal T-cell expressed and secreted (RANTES) (M30, F30 groups). We also demonstrated an increase in catalase activity as well as higher levels of reduced glutathione, advanced oxidation protein products, lipid hydroperoxides, malondialdehyde (M30, M120, F30 groups), and advanced glycation end products (F30 group). The presented findings showed the activation of antioxidative defense in response to increased reactive oxygen species' production after a single bout of exercise, but it did not prevent oxidative damage of macromolecules.


Assuntos
Antioxidantes/metabolismo , Biomarcadores/sangue , Quimiocinas/sangue , Citocinas/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Condicionamento Físico Animal , Animais , Teste de Esforço , Masculino , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar
5.
J Cell Physiol ; 234(7): 11923-11941, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523639

RESUMO

Pyrroloquinoline quinone (PQQ) acts as a powerful modulator of PGC-1α activation and therefore regulates multiple pathways involved in cellular energy homeostasis. In the present study, we assessed the effects of L6 myotubes incubation with 0.5, 1, and 3 µM PQQ solution for 2 and 24 hr with respect to the cells' lipid metabolism. We demonstrated that PQQ significantly elevates PGC-1α content in a dose- and time-dependent manner with the highest efficiency for 0.5 and 1 µM. The level of free fatty acids was diminished (24 hr: -66%), while an increase in triacylglycerol (TAG) amount was most pronounced after 0.5 µM (2 hr: +93%, 24 hr: +139%) treatment. Ceramide (CER) content was elevated after 2 hr incubation with 0.5 µM and after prolonged exposure to all PQQ concentrations. The cells treated with PQQ for 2 hr exhibited decreased sphinganine (SFA) and sphinganine-1-phosphate (SFA1P) level, while 24 hr incubation resulted in an elevated sphingosine (SFO) amount. In summary, PGC-1α activation promotes TAG and CER synthesis.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Cofator PQQ/farmacologia , Animais , Ceramidas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Transativadores/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
6.
Biochem Pharmacol ; 223: 116158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521475

RESUMO

Adipose derived mesenchymal stem cells (ADMSCs) are a component of adipose tissue that in recent years has gained on importance. The progenitor cells serve as an essentially unlimited source of new adipocytes and therefore are considered to be an important determinant of the tissue's physiology. In this paper we investigated mature adipocytes differentiated from ADMSCs obtained from subcutaneous/visceral fat of patients with different metabolic status (lean, obese without and with metabolic syndrome). We focused our interests on the sphingolipid signaling pathway, i.e.a signal transduction system indispensable for cells functioning, but also implicated in the development of medical conditions associated with obesity. We observed that the cells derived from visceral tissue had significantly greater levels of almost all the examined sphingolipids (especially Cer, dhCer, SM). Moreover, obesity and metabolic syndrome present in donor patients was associated with an increased level of sphingosine kinase (SPHK) and the product of its reaction sphingosine-1-phosphate (S1P). Moreover, the condition appeared to display a tissue specific pattern. Namely, the adipocytes of subcutaneous provenance had an increased activation of ceramide de novo synthesis pathway when the donors of ADMSCs had metabolic syndrome. The above translated into greater accumulation of ceramide in the cells. To our knowledge this is the first study that demonstrated altered sphingolipid profile in the mature adipocytes differentiated from ADMSCs with respect to the stem cells tissue of origin and the donor patient metabolic status.


Assuntos
Células-Tronco Mesenquimais , Síndrome Metabólica , Obesidade Mórbida , Humanos , Feminino , Síndrome Metabólica/metabolismo , Obesidade Mórbida/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo
7.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397798

RESUMO

Ovarian cancer (OC) has emerged as the leading cause of death due to gynecological malignancies among women. Oxidative stress and metalloproteinases (MMPs) have been shown to influence signaling pathways and afflict the progression of carcinogenesis. Therefore, the assessment of matrix-remodeling and oxidative stress intensity can determine the degree of cellular injury and often the severity of redox-mediated chemoresistance. The study group comprised 27 patients with serous OC of which 18% were classified as Federation of Gynecology and Obstetrics (FIGO) stages I/II, while the rest were diagnosed grades III/IV. The control group comprised of 15 ovarian tissue samples. The results were compared with genetic data from The Cancer Genome Atlas. Nitro-oxidative stress, inflammation and apoptosis biomarkers were measured colorimetrically/fluorometrically or via real-time PCR in the primary ovarian tumor and healthy tissue. Stratification of patients according to FIGO stages revealed that high-grade carcinoma exhibited substantial alterations in redox balance, including the accumulation of protein glycoxidation and lipid peroxidation products. TCGA data demonstrated only limited prognostic usefulness of the studied genes. In conclusion, high-grade serous OC is associated with enhanced tissue oxidative/nitrosative stress and macromolecule damage that could not be overridden by the simultaneously augmented measures of antioxidant defense. Therefore, it can be assumed that tumor cells acquire adaptive mechanisms that enable them to withstand the potential toxic effects of elevated reactive oxygen species.

8.
Cancers (Basel) ; 16(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275897

RESUMO

Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to investigate alterations of proline metabolism in gliomas of WHO grade 4 (GG4) in the context of the brain. A total of 20 pairs of samples were studied, consisting of excised tumor and unaffected brain tissue, obtained when partial brain resection was required to reach deep-seated lesions. Levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinases (MMP-2, MMP-9) were assessed, along with the concentration of proline and proline-related metabolites. In comparison to normal brain tissue, POX/PRODH expression in GG4 was found to be suppressed, while PYCR1 expression and activity of PEPD, MMP-2, and -9 were upregulated. The GG4 proline concentration was 358% higher. Hence, rewiring of the proline metabolism in GG4 was confirmed for the first time, with a low-POX/PRODH/high-PYCR profile. High PEPD and MMPs activity is in keeping with GG4-increased collagen turnover and local aggressiveness. Further studies on the mechanisms of the interplay between altered proline metabolism and the GG4 microenvironment are warranted.

9.
Antioxidants (Basel) ; 12(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36830059

RESUMO

Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.

10.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136649

RESUMO

Myostatin (growth differentiation factor 8) is a member of the transforming growth factor-ß superfamily. It is secreted mostly by skeletal muscles, although small amounts of myostatin are produced by the myocardium and the adipose tissue as well. Myostatin binds to activin IIB membrane receptors to activate the downstream intracellular canonical Smad2/Smad3 pathway, and additionally acts on non-Smad (non-canonical) pathways. Studies on transgenic animals have shown that overexpression of myostatin reduces the heart mass, whereas removal of myostatin has an opposite effect. In this review, we summarize the potential diagnostic and prognostic value of this protein in heart-related conditions. First, in myostatin-null mice the left ventricular internal diameters along with the diastolic and systolic volumes are larger than the respective values in wild-type mice. Myostatin is potentially secreted as part of a negative feedback loop that reduces the effects of the release of growth-promoting factors and energy reprogramming in response to hypertrophic stimuli. On the other hand, both human and animal data indicate that myostatin is involved in the development of the cardiac cachexia and heart fibrosis in the course of chronic heart failure. The understanding of the role of myostatin in such conditions might initiate a development of targeted therapies based on myostatin signaling inhibition.


Assuntos
Músculo Esquelético , Miostatina , Camundongos , Humanos , Animais , Miostatina/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Proteínas/metabolismo
11.
Front Mol Biosci ; 10: 1232159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602323

RESUMO

The Akt substrate of 160 kDa (AS160), also known as TBC1 domain family member 4 (TBC1D4), represents a crucial regulator of insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Recent evidence suggests that AS160/TBC1D4 may also control the cellular entry of long-chain fatty acids (LCFAs), resulting in changes to the lipid profile of muscles and fat cells in lean subjects. However, there are virtually no data on AS160/TBC1D4 expression and its modulatory role in lipid metabolism in the adipocytes from morbidly obese individuals of different metabolic status. In this study, we evaluated the effect of the three main factors, i.e., AS160 silencing, obesity, and metabolic syndrome on lipid uptake and profile in fully differentiated adipocytes derived from mesenchymal stem cells (ADMSCs) of lean and obese (with/without metabolic syndrome) postmenopausal women. Additionally, we tested possible interactions between the explanatory variables. In general, obesity translated into a greater content of fatty acid transporters (especially CD36/SR-B2 and SLC27A4/FATP4) and boosted accumulation of all the examined lipid fractions, i.e., triacylglycerols (TAGs), diacylglycerols (DAGs), and free fatty acids (FFAs). The aforementioned were further enhanced by metabolic syndrome. Moreover, AS160 deficiency also increased the abundance of SLC27A4/FATP4 and CD36/SR-B2, especially on the cell surface of the adipocytes derived from ADMSCs of subcutaneous deposit. This was further accompanied by increased LCFA (palmitic acid) uptake. Despite the aforementioned, AS160 silencing seemed unable to significantly affect the phenotype of the adipocytes stemming from obese patients with respect to their cellular lipid profile as we observed virtually no changes in TAG, DAG, and FFA contents when compared to cells with the reference level of proteins. Nevertheless, knockdown of AS160 stimulated fatty acid oxidation, which may indicate that adaptive mechanisms counteract excessive lipid accumulation. At the same time, adipocytes of visceral origin were rather insensitive to the applied intervention.

12.
Nutrition ; 107: 111942, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621260

RESUMO

OBJECTIVES: High-protein diets (HPDs) are widely accepted to enhance satiety and energy expenditure and thus have become a popular strategy to lose weight and facilitate muscle protein synthesis. However, long-term high-protein consumption could be linked with metabolic and clinical problems such as renal and liver dysfunctions. This study verified the effects of 8-wk high-protein ingestion on lipid peroxidation and sphingolipid metabolism in the plasma, cerebral cortex, and hypothalamus in rats. METHODS: Immunoenzymatic and spectrophotometric methods were applied to assess oxidation-reduction (redox) biomarkers and neutral sphingomyelinase activity, whereas gas-liquid chromatography and high-performance liquid chromatography were used to examine sphingolipid levels. RESULTS: The vast majority of HPD-related alterations was restricted to the hypothalamus. Specifically, an increased rate of lipid peroxidation (increased lipid hydroperoxides, 8-isoprostanes, and thiobarbituric acid reactive substances) associated with ceramide accumulation via the activation of de novo synthesis (decreased sphinganine), salvage pathway (decreased sphingosine), and sphingomyelin hydrolysis (decreased sphingomyelin and increased neutral sphingomyelinase activity) was noted. CONCLUSIONS: This study showed that HPD substantially affected hypothalamic metabolic pathways, which potentially alter cerebral output signals to the peripheral tissues.


Assuntos
Dieta Rica em Proteínas , Esfingolipídeos , Ratos , Animais , Esfingomielinas , Peroxidação de Lipídeos , Esfingomielina Fosfodiesterase/metabolismo , Córtex Cerebral/metabolismo , Hipotálamo/metabolismo
13.
Cells ; 11(9)2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563741

RESUMO

Adipose tissue is an abundant source of mesenchymal stem cells (ADMSCs). Evidence has suggested that depot-specific ADMSCs (obtained from subcutaneous or visceral adipose tissue-subADMSCs or visADMSCs, respectively) account for differential responses of each depot to metabolic challenges. However, little is known about the phenotype and changes in metabolism of the adipocytes derived from ADMSCs of obese individuals. Therefore, we investigated the phenotypic and metabolic characteristics, particularly the lipid profile, of fully differentiated adipocytes derived from ADMSCs of lean and obese (with/without metabolic syndrome) postmenopausal women. We observed a depot-specific pattern, with more pronounced changes present in the adipocytes obtained from subADMSCs. Namely, chronic oversupply of fatty acids (present in morbid obesity) triggered an increase in CD36/SR-B2 and FATP4 protein content (total and cell surface), which translated to an increased LCFA influx (3H-palmitate uptake). This was associated with the accumulation of TAG and DAG in these cells. Furthermore, we observed that the adipocytes of visADMSCs origin were larger and showed smaller granularity than their counterparts of subADMSCs descent. Although ADMSCs were cultured in vitro, in a fatty acids-deprived environment, obesity significantly influenced the functionality of the progenitor adipocytes, suggesting the existence of a memory effect.


Assuntos
Células-Tronco Mesenquimais , Obesidade Mórbida , Adipócitos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Obesidade Mórbida/metabolismo , Fenótipo , Gordura Subcutânea
14.
J Inflamm Res ; 15: 2295-2312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422650

RESUMO

Background: Oxidative stress underlies metabolic diseases and cognitive impairment; thus, the use of antioxidants may improve brain function in insulin-resistant conditions. We are the first to evaluate the effects of α-lipoic acid (ALA) on redox homeostasis, sphingolipid metabolism, neuroinflammation, apoptosis, and ß-amyloid accumulation in the cerebral cortex and hypothalamus of insulin-resistant rats. Methods: The experiment was conducted on male cmdb/outbred Wistar rats fed a high-fat diet (HFD) for 10 weeks with intragastric administration of ALA (30 mg/kg body weight) for 4 weeks. Pro-oxidant and pro-inflammatory enzymes, oxidative stress, sphingolipid metabolism, neuroinflammation, apoptosis, and ß-amyloid level were assessed in the hypothalamus and cerebral cortex using colorimetric, fluorimetric, ELISA, and HPLC methods. Statistical analysis was performed using three-way ANOVA followed by the Tukey HSD test. Results: ALA normalizes body weight, food intake, glycemia, insulinemia, and systemic insulin sensitivity in HFD-fed rats. ALA treatment reduces nicotinamide adenine dinucleotide phosphate (NADPH) and xanthine oxidase activity, increases ferric-reducing antioxidant power (FRAP) and thiol levels in the hypothalamus of insulin-resistant rats. In addition, it decreases myeloperoxidase, glucuronidase, and metalloproteinase-2 activity and pro-inflammatory cytokines (IL-1ß, IL-6) levels, while in the cerebral cortex ALA reduces ß-amyloid accumulation. In both brain structures, ALA diminishes ceramide synthesis and caspase-3 activity. ALA improves systemic oxidative status and reduces insulin-resistant rats' serum cytokines, chemokines, and growth factors. Conclusion: ALA normalizes lipid and carbohydrate metabolism in insulin-resistant rats. At the brain level, ALA primarily affects hypothalamic metabolism. ALA improves redox homeostasis by decreasing the activity of pro-oxidant enzymes, enhancing total antioxidant potential, and reducing protein and lipid oxidative damage in the hypothalamus of HFD-fed rats. ALA also reduces hypothalamic inflammation and metalloproteinases activity, and cortical ß-amyloid accumulation. In both brain structures, ALA diminishes ceramide synthesis and neuronal apoptosis. Although further study is needed, ALA may be a potential treatment for patients with cerebral complications of insulin resistance.

15.
Cells ; 10(6)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208471

RESUMO

TBC1D4 (AS160) and TBC1D1 are Rab GTPase-activating proteins that play a key role in the regulation of glucose and possibly the transport of long chain fatty acids (LCFAs) into muscle and fat cells. Knockdown (KD) of TBC1D4 increased CD36/SR-B2 and FABPpm protein expressions in L6 myotubes, whereas in murine cardiomyocytes, TBC1D4 deficiency led to a redistribution of CD36/SR-B2 to the sarcolemma. In our study, we investigated the previously unexplored role of both Rab-GAPs in LCFAs uptake in human adipocytes differentiated from the ADMSCs of subcutaneous and visceral adipose tissue origin. To this end we performed a single- and double-knockdown of the proteins (TBC1D1 and TBC1D4). Herein, we provide evidence that AS160 mediates fatty acid entry into the adipocytes derived from ADMSCs. TBC1D4 KD resulted in quite a few alterations to the cellular phenotype, the most obvious of which was the shift of the CD36/SR-B2 transport protein to the plasma membrane. The above translated into an increased uptake of saturated long-chain fatty acid. Interestingly, we observed a tissue-specific pattern, with more pronounced changes present in the adipocytes derived from subADMSCs. Altogether, our data show that in human adipocytes, TBC1D4, but not TBC1D1, deficiency increases LCFAs transport via CD36/SR-B2 translocation.


Assuntos
Adipócitos/metabolismo , Ácidos Graxos/metabolismo , Proteínas Ativadoras de GTPase/deficiência , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo , Antígenos CD36/metabolismo , Células Cultivadas , Feminino , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Receptores Depuradores/metabolismo
16.
Front Physiol ; 8: 923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187824

RESUMO

PGC-1α coactivator plays a decisive role in the maintenance of lipid balance via engagement in numerous metabolic processes (i.e., Krebs cycle, ß-oxidation, oxidative phosphorylation and electron transport chain). It constitutes a link between fatty acids import and their complete oxidation or conversion into bioactive fractions through the coordination of both the expression and subcellular relocation of the proteins involved in fatty acid transmembrane movement. Studies on cell lines and/or animal models highlighted the existence of an upregulation of the total and mitochondrial FAT/CD36, FABPpm and FATPs content in skeletal muscle in response to PGC-1α stimulation. On the other hand, the association between PGC-1α level or activity and the fatty acids transport in the heart and adipocytes is still elusive. So far, the effects of PGC-1α on the total and sarcolemmal expression of FAT/CD36, FATP1, and FABPpm in cardiomyocytes have been shown to vary in relation to the type of PPAR that was coactivated. In brown adipose tissue (BAT) PGC-1α knockdown was linked with a decreased level of lipid metabolizing enzymes and fatty acid transporters (FAT/CD36, FABP3), whereas the results obtained for white adipose tissue (WAT) remain contradictory. Furthermore, dysregulation in lipid turnover is often associated with insulin intolerance, which suggests the coactivator's potential role as a therapeutic target.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa