RESUMO
OBJECTIVE: Use subchondral bone length (SBL), a new MRI-derived measure that reflects the extent of cartilage loss and bone flattening, to predict the risk of progression to total knee replacement (TKR). METHODS: We employed baseline MRI data from the Osteoarthritis Initiative (OAI), focusing on 760 men and 1214 women with bone marrow lesions (BMLs) and joint space narrowing (JSN) scores, to predict the progression to TKR. To minimize bias from analyzing both knees of a participant, only the knee with a higher Kellgren-Lawrence (KL) grade was considered, given its greater potential need for TKR. We utilized the Kaplan-Meier survival curves and Cox proportional hazards models, incorporating raw and normalized values of SBL, JSN, and BML as predictors. The study included subgroup analyses for different demographics and clinical characteristics, using models for raw and normalized SBL (merged, femoral, tibial), BML (merged, femoral, tibial), and JSN (medial and lateral compartments). Model performance was evaluated using the time-dependent area under the curve (AUC), Brier score, and Concordance index to gauge accuracy, calibration, and discriminatory power. Knee joint and region-level analyses were conducted to determine the effectiveness of SBL, JSN, and BML in predicting TKR risk. RESULTS: The SBL model, incorporating data from both the femur and tibia, demonstrated a predictive capacity for TKR that closely matched the performance of the BML score and the JSN grade. The Concordance index of the SBL model was 0.764, closely mirroring the BML's 0.759 and slightly below JSN's 0.788. The Brier score for the SBL model stood at 0.069, showing comparability with BML's 0.073 and a minor difference from JSN's 0.067. Regarding the AUC, the SBL model achieved 0.803, nearly identical to BML's 0.802 and slightly lower than JSN's 0.827. CONCLUSION: SBL's capacity to predict the risk of progression to TKR highlights its potential as an effective imaging biomarker for knee osteoarthritis.
Assuntos
Artroplastia do Joelho , Progressão da Doença , Imageamento por Ressonância Magnética , Osteoartrite do Joelho , Humanos , Feminino , Masculino , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Imageamento por Ressonância Magnética/métodos , Idoso , Pessoa de Meia-Idade , Análise de Sobrevida , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Articulação do Joelho/patologiaRESUMO
OBJECTIVE: To develop a bone shape measure that reflects the extent of cartilage loss and bone flattening in knee osteoarthritis (OA) and test it against estimates of disease severity. METHODS: A fast region-based convolutional neural network was trained to crop the knee joints in sagittal dual-echo steady-state magnetic resonance imaging sequences obtained from the Osteoarthritis Initiative (OAI). Publicly available annotations of the cartilage and menisci were used as references to annotate the tibia and the femur in 61 knees. Another deep neural network (U-Net) was developed to learn these annotations. Model predictions were compared to radiologist-driven annotations on an independent test set (27 knees). The U-Net was applied to automatically extract the knee joint structures on the larger OAI data set (n = 9,434 knees). We defined subchondral bone length (SBL), a novel shape measure characterizing the extent of overlying cartilage and bone flattening, and examined its relationship with radiographic joint space narrowing (JSN), concurrent pain and disability (according to the Western Ontario and McMaster Universities Osteoarthritis Index), as well as subsequent partial or total knee replacement. Odds ratios (ORs) and 95% confidence intervals (95% CIs) for each outcome were estimated using relative changes in SBL from the OAI data set stratified into quartiles. RESULTS: The mean SBL values for knees with JSN were consistently different from knees without JSN. Greater changes of SBL from baseline were associated with greater pain and disability. For knees with medial or lateral JSN, the ORs for future knee replacement between the lowest and highest quartiles corresponding to SBL changes were 5.68 (95% CI 3.90-8.27) and 7.19 (95% CI 3.71-13.95), respectively. CONCLUSION: SBL quantified OA status based on JSN severity and shows promise as an imaging marker in predicting clinical and structural OA outcomes.