Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Hypertens Rep ; 18(6): 44, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27125390

RESUMO

There is increasing concern that sugar consumption may be linked to the development of metabolic and cardiovascular diseases. There is indeed strong evidence that consumption of energy-dense sugary beverages and foods is associated with increased energy intake and body weight gain over time. It is further proposed that the fructose component of sugars may exert specific deleterious effects due to its propension to stimulate hepatic glucose production and de novo lipogenesis. Excess fructose and energy intake may be associated with visceral obesity, intrahepatic fat accumulation, and high fasting and postprandial blood triglyceride concentrations. Additional effects of fructose on blood uric acid and sympathetic nervous system activity have also been reported, but their link with metabolic and cardiovascular diseases remains hypothetical. There is growing evidence that fructose at physiologically consumed doses may exert important effects on kidney function. Whether this is related to the development of high blood pressure and cardiovascular diseases remains to be further assessed.


Assuntos
Doenças Cardiovasculares , Ingestão de Energia/fisiologia , Frutose/metabolismo , Glucose/metabolismo , Doenças Metabólicas , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Humanos , Lipogênese/fisiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Fatores de Risco
2.
Nutrients ; 15(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513665

RESUMO

Precision nutrition involves several data collection methods and tools that aim to better inform nutritional recommendations and improve dietary intake, nutritional status, and health outcomes. While the benefits of collecting precise data and designing well-informed interventions are vast, it is presently unclear whether precision nutrition is a relevant approach for tackling nutrition challenges facing populations in low- and middle-income countries (LMIC), considering infrastructure, affordability, and accessibility of approaches. The Swiss Food & Nutrition Valley (SFNV) Precision Nutrition for LMIC project working group assessed the relevance of precision nutrition for LMIC by first conducting an expert opinion survey and then hosting a workshop with nutrition leaders who live or work in LMIC. The experts were interviewed to discuss four topics: nutritional problems, current solutions, precision nutrition, and collaboration. Furthermore, the SFNV Precision Nutrition for LMIC Virtual Workshop gathered a wider group of nutrition leaders to further discuss precision nutrition relevance and opportunities. Our study revealed that precision public health nutrition, which has a clear focus on the stratification of at-risk groups, may offer relevant support for nutrition and health issues in LMIC. However, funding, affordability, resources, awareness, training, suitable tools, and safety are essential prerequisites for implementation and to equitably address nutrition challenges in low-resource communities.


Assuntos
Distúrbios Nutricionais , Terapia Nutricional , Humanos , Países em Desenvolvimento , Prova Pericial , Estado Nutricional
3.
Nutrients ; 11(1)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669704

RESUMO

Sucrose overfeeding increases intrahepatocellular (IHCL) and intramyocellular (IMCL) lipid concentrations in healthy subjects. We hypothesized that these effects would be modulated by diet protein/fat content. Twelve healthy men and women were studied on two occasions in a randomized, cross-over trial. On each occasion, they received a 3-day 12% protein weight maintenance diet (WM) followed by a 6-day hypercaloric high sucrose diet (150% energy requirements). On one occasion the hypercaloric diet contained 5% protein and 25% fat (low protein-high fat, LP-HF), on the other occasion it contained 20% protein and 10% fat (high protein-low fat, HP-LF). IHCL and IMCL concentrations (magnetic resonance spectroscopy) and energy expenditure (indirect calorimetry) were measured after WM, and again after HP-LF/LP-HF. IHCL increased from 25.0 ± 3.6 after WM to 147.1 ± 26.9 mmol/kg wet weight (ww) after LP-HF and from 30.3 ± 7.7 to 57.8 ± 14.8 after HP-LF (two-way ANOVA with interaction: p < 0.001 overfeeding x protein/fat content). IMCL increased from 7.1 ± 0.6 to 8.8 ± 0.7 mmol/kg ww after LP-HF and from 6.2 ± 0.6 to 6.9 ± 0.6 after HP-LF, (p < 0.002). These results indicate that liver and muscle fat deposition is enhanced when sucrose overfeeding is associated with a low protein, high fat diet compared to a high protein, low fat diet.


Assuntos
Tecido Adiposo/metabolismo , Dieta , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Sacarose Alimentar/efeitos adversos , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Adulto , Estudos Cross-Over , Dieta Hiperlipídica/efeitos adversos , Dieta com Restrição de Proteínas/efeitos adversos , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Proteínas Alimentares/farmacologia , Ingestão de Energia , Comportamento Alimentar , Feminino , Voluntários Saudáveis , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Fígado/citologia , Fígado/metabolismo , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Adulto Jovem
4.
Obesity (Silver Spring) ; 24(3): 589-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26916239

RESUMO

OBJECTIVE: Fructose is partly metabolized in small bowel enterocytes, where it can be converted into glucose or fatty acids. It was therefore hypothesized that Roux-en-Y gastric bypass (RYGB) may significantly alter fructose metabolism. METHODS: We performed a randomized clinical study in eight patients 12-17 months after RYGB and eight control (Ctrl) subjects. Each participant was studied after ingestion of a protein and lipid meal (PL) and after ingestion of a protein+lipid+fructose+glucose meal labeled with (13) C-fructose (PLFG). Postprandial blood glucose, fructose, lactate, apolipoprotein B48 (apoB48), and triglyceride (TG) concentrations, (13) C-palmitate concentrations in chylomicron-TG and VLDL-TG, fructose oxidation ((13) CO2 production), and gluconeogenesis from fructose (GNGf) were measured over 6 hours. RESULTS: After ingestion of PLFG, postprandial plasma fructose, glucose, insulin, and lactate concentrations increased earlier and reached higher peak values in RYGB than in Ctrl. GNGf was 33% lower in RYGB than Ctrl (P = 0.041), while fructose oxidation was unchanged. Postprandial incremental areas under the curves for total TG and chylomicrons-TG were 72% and 91% lower in RYGB than Ctrl (P = 0.064 and P = 0.024, respectively). ApoB48 and (13) C-palmitate concentrations were not significantly different. CONCLUSIONS: Postprandial fructose metabolism was not grossly altered, but postprandial lipid concentrations were markedly decreased in subjects having had RYGB surgery.


Assuntos
Anastomose em-Y de Roux , Metabolismo dos Carboidratos/efeitos dos fármacos , Frutose/administração & dosagem , Período Pós-Prandial/efeitos dos fármacos , Adulto , Idoso , Apolipoproteína B-48/sangue , Glicemia/metabolismo , Feminino , Frutose/efeitos adversos , Humanos , Insulina/sangue , Lipoproteínas VLDL/sangue , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa