Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(6): 2747-2764, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32761757

RESUMO

Genetic markers and geochemical assays of microbial nitrogen cycling processes, including autotrophic and heterotrophic denitrification, anammox, ammonia oxidation, and nitrite oxidation, were examined across the oxycline, suboxic, and anoxic zones of the Cariaco Basin, Venezuela. Ammonia and nitrite oxidation genes were expressed through the entire gradient. Transcripts associated with autotrophic and heterotrophic denitrifiers were mostly confined to the suboxic zone and below but were also present in particles in the oxycline. Anammox genes and transcripts were detected over a narrow depth range near the bottom of the suboxic zone and coincided with secondary NO2 - maxima and available NH4 + . Dissolved inorganic nitrogen (DIN) amendment incubations and comparisons between our sampling campaigns suggested that denitrifier activity may be closely coupled with NO3 - availability. Expression of denitrification genes at depths of high rates of chemoautotrophic carbon fixation and phylogenetic analyses of nitrogen cycling genes and transcripts indicated a diverse array of denitrifiers, including chemoautotrophs capable of using NO3 - to oxidize reduced sulfur species. Thus, results suggest that the Cariaco Basin nitrogen cycle is influenced by autotrophic carbon cycling in addition to organic matter oxidation and anammox.


Assuntos
Nitrogênio , Oxigênio , Reatores Biológicos , Crescimento Quimioautotrófico , Desnitrificação , Ciclo do Nitrogênio , Oxirredução , Filogenia
2.
Environ Microbiol ; 20(2): 693-712, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160034

RESUMO

Using the anoxic Cariaco Basin as a natural laboratory, particle association of bacterial and archaeal taxa was assessed by iTag sequencing and qPCR gene assays of samples spanning an oxic-anoxic-euxinic gradient. A total of 10%-12% of all bacterial and archaeal cells were found in the particle-associated (PA) fraction, operationally defined as prokaryotes captured on 2.7 µm membranes. Both redox condition and size fraction segregated bacterial taxa. Archaeal taxa varied according to redox conditions, but were similar between size fractions. Taxa putatively associated with chemoautotrophic sulfur oxidation and nitrification dominated the free-living (FL) fraction throughout the oxycline (< 1-120 µM O2 ) and upper anoxic layer. Bacteria in the oxycline's PA fraction included taxa known to be aerobic and anaerobic chemoorganotrophs. At shallow anoxic depths, PA taxa were primarily affiliated with anaerobic sulfate ( SO42-)-reducing lineages. PA fractions in the most sulfidic samples were dominated by taxa affiliated with CH4 oxidizing, fermenting and SO42- reducing lineages. Prevalence of particle-associated SO42--reducing taxa and abundant sulfur-oxidizing taxa in both size fractions across the oxic-anoxic interface is consistent with the cryptic sulfur cycling concept. Bacterial assemblage diversity in the PA fraction always exceeded the FL fraction except in the most oxic samples, whereas Archaeal diversity was not consistently different between size fractions. Our results suggest that these particle-associated and free-living bacterial assemblages are functionally different and that the interplay between particle microhabitats and surrounding geochemical regimes is a strong selective force shaping microbial communities throughout the water column.


Assuntos
Archaea , Bactérias , Água do Mar/microbiologia , Microbiologia da Água , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Crescimento Quimioautotrófico , Metano/metabolismo , Nitrogênio/metabolismo , Oxirredução , Filogenia , Enxofre/metabolismo , Venezuela
3.
Front Microbiol ; 12: 764605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069470

RESUMO

Oxygen-depleted water columns (ODWCs) host a diverse community of eukaryotic protists that change dramatically in composition over the oxic-anoxic gradient. In the permanently anoxic Cariaco Basin, peaks in eukaryotic diversity occurred in layers where dark microbial activity (chemoautotrophy and heterotrophy) were highest, suggesting a link between prokaryotic activity and trophic associations with protists. Using 18S rRNA gene sequencing, parasites and especially the obligate parasitic clade, Syndiniales, appear to be particularly abundant, suggesting parasitism is an important, but overlooked interaction in ODWC food webs. Syndiniales were also associated with certain prokaryotic groups that are often found in ODWCs, including Marinimicrobia and Marine Group II archaea, evocative of feedbacks between parasitic infection events, release of organic matter, and prokaryotic assimilative activity. In a network analysis that included all three domains of life, bacterial and archaeal taxa were putative bottleneck and hub species, while a large proportion of edges were connected to eukaryotic nodes. Inclusion of parasites resulted in a more complex network with longer path lengths between members. Together, these results suggest that protists, and especially protistan parasites, play an important role in maintaining microbial food web complexity, particularly in ODWCs, where protist diversity and microbial productivity are high, but energy resources are limited relative to euphotic waters.

4.
ISME J ; 14(12): 3079-3092, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32801311

RESUMO

Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe-S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.


Assuntos
Vírus , Ecossistema , Prófagos , Enxofre
5.
Front Microbiol ; 8: 1449, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824580

RESUMO

A new method to measure growth rates of individual photoautotrophic cells by combining stable isotope probing (SIP) and single-cell resonance Raman microspectrometry is introduced. This report explores optimal experimental design and the theoretical underpinnings for quantitative responses of Raman spectra to cellular isotopic composition. Resonance Raman spectra of isogenic cultures of the cyanobacterium, Synechococcus sp., grown in 13C-bicarbonate revealed linear covariance between wavenumber (cm-1) shifts in dominant carotenoid Raman peaks and a broad range of cellular 13C fractional isotopic abundance. Single-cell growth rates were calculated from spectra-derived isotopic content and empirical relationships. Growth rates among any 25 cells in a sample varied considerably; mean coefficient of variation, CV, was 29 ± 3% (σ/[Formula: see text]), of which only ~2% was propagated analytical error. Instantaneous population growth rates measured independently by in vivo fluorescence also varied daily (CV ≈ 53%) and were statistically indistinguishable from single-cell growth rates at all but the lowest levels of cell labeling. SCRR censuses of mixtures prepared from Synechococcus sp. and T. pseudonana (a diatom) populations with varying 13C-content and growth rates closely approximated predicted spectral responses and fractional labeling of cells added to the sample. This approach enables direct microspectrometric interrogation of isotopically- and phylogenetically-labeled cells and detects as little as 3% changes in cellular fractional labeling. This is the first description of a non-destructive technique to measure single-cell photoautotrophic growth rates based on Raman spectroscopy and well-constrained assumptions, while requiring few ancillary measurements.

6.
J Lesbian Stud ; 7(2): 71-83, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-24815895

RESUMO

SUMMARY This exploratory study begins to redress a critical gap in the literature on committed same-sex relationships and last name practices. Data were gathered from an Internet survey, which included 16 lesbian respondents currently in a same-sex relationship. Analyses explored individual, couple, and family of origin factors associated with changing or not changing one's name. Name-changing was cited as a strategy for securing external recognition and acceptance of family status by outsiders. Not changing was cited as a strategy to preserve each partner's individual identity. Contrary to our expectations, changing one's last name was not associated with having a commitment ceremony. Instead, name-changing was ritualized on other occasions, special to the individual couple, such as an anniversary, a partner's birthday, or an intimate dinner party among friends.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa