Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 107(7): 878-884, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28409525

RESUMO

Pyrenophora teres f. teres and P. teres f. maculata cause net form and spot form, respectively, of net blotch on barley (Hordeum vulgare). The two forms reproduce sexually, producing hybrids with genetic and pathogenic variability. Phenotypic identification of hybrids is challenging because lesions induced by hybrids on host plants resemble lesions induced by either P. teres f. teres or P. teres f. maculata. In this study, 12 sequence-specific polymerase chain reaction markers were developed based on expressed regions spread across the genome. The primers were validated using 210 P. teres isolates, 2 putative field hybrids (WAC10721 and SNB172), 50 laboratory-produced hybrids, and 7 isolates collected from barley grass (H. leporinum). The sequence-specific markers confirmed isolate WAC10721 as a hybrid. Only four P. teres f. teres markers amplified on DNA of barley grass isolates. Amplified fragment length polymorphism markers suggested that P. teres barley grass isolates are genetically different from P. teres barley isolates and that the second putative hybrid (SNB172) is a barley grass isolate. We developed a suite of markers which clearly distinguish the two forms of P. teres and enable unambiguous identification of hybrids.


Assuntos
Ascomicetos/genética , Doenças das Plantas/microbiologia , Austrália , Marcadores Genéticos , Hordeum/microbiologia , Hibridização Genética , Reação em Cadeia da Polimerase , África do Sul
2.
Plant Dis ; 101(12): 2116-2122, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30677367

RESUMO

Fusarium crown rot is a major disease of wheat and barley worldwide, with the most frequently isolated causal agents being Fusarium pseudograminearum and F. culmorum. This study has successfully designed a quantitative polymerase chain reaction assay that is specific for F. culmorum, which has been used in conjunction with a previously established F. pseudograminearum-specific assay to compare the location and extent of infection by each fungus across a range of potential hosts, including six winter and three summer cereal species. All common winter cereals, excluding oat, demonstrated a similar range of visual and fungal biomass results when inoculated with either F. pseudograminearum or F. culmorum. Oat exhibited the lowest visual disease ratings and fungal biomass values of the winter cereals, while the sorghum, maize, and rice cultivars returned the lowest values overall. The ranking of host species according to visual discoloration was strongly correlated for both pathogens. Visual reactions to F. pseudograminearum were greater than those caused by F. culmorum in all potential hosts trialed; however, fungal biomass results only indicated this trend for barley. These results demonstrate significant variation in the ability of these pathogens to colonize the range of cereal species examined and also suggest differences between the pathogens in their patterns of host colonization.


Assuntos
Biomassa , Grão Comestível , Fusarium , Especificidade de Hospedeiro , Grão Comestível/microbiologia , Fusarium/fisiologia , Plântula/microbiologia
3.
Plant Dis ; 101(10): 1788-1794, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30676917

RESUMO

Fusarium crown rot is a significant disease of durum wheat (Triticum turgidum L. var. durum), which exhibits high levels of disease susceptibility. The most extreme symptom of crown rot is a prematurely senescing culm that typically fails to set grain. Individual crown rot-affected durum wheat plants displaying both nonsenescent and prematurely senescent culms were harvested to compare visual discoloration, Fusarium pseudograminearum biomass, and vascular colonization in culm sections sampled at three different heights above the crown. Field samples of EGA Bellaroi were collected at Wellcamp, QLD, in 2011, 2012, 2013, and 2014, and of Hyperno at Narrabri, NSW, in 2014. Prematurely senescent culms exhibited greater visual discoloration, F. pseudograminearum biomass, and vascular colonization than nonsenescent culms in each year they were examined. The extent of these differences varied between environments and timing of collection in each year. Vascular colonization initially occurred in xylem vessels and spread into phloem tissues as disease severity increased. The increased presence of hyphae in vascular bundles of prematurely senescing culms provides strong evidence for the hypothesis that restriction of water and nutrient movement in a diseased culm is a key factor in crown rot severity.


Assuntos
Fusarium , Triticum , Meio Ambiente , Fusarium/fisiologia , Fatores de Tempo , Triticum/microbiologia
4.
Plant Dis ; 100(2): 252-259, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694128

RESUMO

Histopathological assessment of the crown rot pathogen Fusarium pseudograminearum was performed using fluorescence microscopy of culm tissues of six cereal genotypes grown in inoculated field conditions. Tissue samples were collected at 10, 16, and 22 weeks after planting (WAP). Colonization of culm tissues was initiated through epidermal penetration, most distinctly through stomatal apertures, and progressed into the parenchymatous hypoderm, which exhibited the discoloration used as the basis for visual assessment of disease. Hyphae spread from the culm base vertically through the tissues, initially via the hypoderm and pith cavity. Colonization of sclerified cells occurred later in the disease process. Both xylem and phloem tissues became colonized by 16 WAP in all host genotypes, with colonization being less extensive in the more resistant genotypes. Culms displaying dead head symptoms revealed dense colonization in at least the first three internodes, with frequent xylem vessel and phloem cell occlusions. Paired living culms from the same plants exhibited less extensive colonization. These observations have revealed the ability of F. pseudograminearum to colonize all cell types of nodal and internodal sections, including vascular tissues, across all host genotypes. This study is the first detailed examination of the pattern of F. pseudograminearum colonization in adult hosts and indicates a potential vascular mechanism by which the effects of crown rot are produced.

5.
Plant Dis ; 96(11): 1661-1669, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30727460

RESUMO

Assessment among cereal genotypes of relative seedling resistance to the crown rot pathogen Fusarium pseudograminearum has been primarily based on visual discoloration of the leaf sheaths. This study is the first to investigate the relationship between the widely used visual rating of seedling leaf sheath discoloration and the degree of colonization of these tissues by the pathogen, based on quantitative polymerase chain reaction (qPCR) of fungal DNA using primers specific for the translation elongation factor α sequence. Fourteen-day-old seedlings of four hard white spring wheat genotypes which differ in their degree of resistance to the pathogen, based on the expression of visible symptoms, were inoculated using a droplet method and assessed weekly from 7 to 35 days after inoculation (dai) for both discoloration and fungal DNA content per unit of tissue weight. Both visual assessment of disease symptoms and qPCR of fungal biomass indicated significant differences between the partially resistant and susceptible wheat genotypes from 14 dai. Visual discoloration of leaf sheath tissues was strongly correlated with fungal biomass estimated by qPCR in all four genotypes; however, this correlation became weaker with increasing time after inoculation. Significant correlations between these parameters were indicated at 14, 21, and 28 dai whereas, by 35 dai, the correlation was not significant. Evaluation of plants at 14 dai provided a rapid test which gave clear discrimination between lines for both parameters and was the time point of closest correlation between fungal colonization and disease symptoms. Symptom expression at all times following inoculation was accompanied by tissue infection, and at no time was symptomless infection observed under this screening environment. These qPCR results confirm that visual assessments of disease symptoms reflect the extent of tissue colonization by the pathogen in recently colonized tissues and confirm the validity of visual assessments for disease rating in high-throughput screening of breeding materials.

6.
Front Plant Sci ; 8: 358, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367153

RESUMO

Interspecific hybridisation between hexaploid and tetraploid wheat species leads to the development of F1 pentaploid hybrids with unique chromosomal constitutions. Pentaploid hybrids derived from bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum spp. durum Desf.) crosses can improve the genetic background of either parent by transferring traits of interest. The genetic variability derived from bread and durum wheat and transferred into pentaploid hybrids has the potential to improve disease resistance, abiotic tolerance, and grain quality, and to enhance agronomic characters. Nonetheless, pentaploid wheat hybrids have not been fully exploited in breeding programs aimed at improving crops. There are several potential barriers for efficient pentaploid wheat production, such as low pollen compatibility, poor seed set, failed seedling establishment, and frequent sterility in F1 hybrids. However, most of the barriers can be overcome by careful selection of the parental genotypes and by employing the higher ploidy level genotype as the maternal parent. In this review, we summarize the current research on pentaploid wheat hybrids and analyze the advantages and pitfalls of current methods used to assess pentaploid-derived lines. Furthermore, we discuss current and potential applications in commercial breeding programs and future directions for research into pentaploid wheat.

7.
Theor Appl Genet ; 117(5): 721-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18553067

RESUMO

Using an established genetic map, a single gene conditioning covered smut resistance, Ruh.7H, was mapped to the telomere region of chromosome 7HS in an Alexis/Sloop doubled haploid barley population. The closest marker to Ruh.7H, abg704 was 7.5 cM away. Thirteen loci on the distal end of 7HS with potential to contain single nucleotide polymorphisms (SNPs) were identified by applying a comparative genomics approach using rice sequence data. Of these, one locus produced polymorphic co-dominant bands of different size while two further loci contained SNPs that were identified using the recently developed high resolution melting (HRM) technique. Two of these markers flanked Ruh.7H with the proximal marker located 3.8 cM and the distal marker 2.7 cM away. This is the first report on the application of the HRM technique to SNP detection and to rapid scoring of known cleaved amplified polymorphic sequence (CAPS) markers in plants. This simple, precise post-PCR technique should find widespread use in the fine-mapping of genetic regions of interest in complex cereal and other plant genomes.


Assuntos
Mapeamento Cromossômico/métodos , Hordeum/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Cromossomos de Plantas , Etiquetas de Sequências Expressas , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Hordeum/microbiologia , Imunidade Inata/genética , Fenótipo , Doenças das Plantas/microbiologia , Ustilago
8.
Funct Plant Biol ; 30(1): 91-99, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32688996

RESUMO

We examined production of reactive oxygen species (ROS) and induction of cell death in tissue-cultured tobacco cells undergoing different disease resistance responses. A superoxide-dependent hypersensitive response occurs during both the race-specific resistance response of tobacco cells challenged with incompatible zoospores of Phytophthora nicotianae and during non-specific elicitation of tobacco cells challenged with Phytophthora glucan elicitors extracted from the fungal cell wall. Inhibition studies are consistent with dependence upon endogenous Ca2+ levels, and with involvement of NAD(P)H oxidase and peroxidases in production of ROS during both specific and non-specific elicitation. The patterns of resistance expression during non-host resistance or field resistance responses appear to be similar to race-specific resistance expression with regard to the timing and order of events. However, the intensity of the response is very much reduced. In contrast, during non-specific elicitation, these temporal patterns are significantly altered. The differences in timing, intensity and extent of responses during different modes of disease resistance expression indicate that stimulation of cultured plant cells with non-specific soluble fractions in order to model in planta events during plant / Oomycete and, by implication, plant / fungal interactions, has significant limitations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa