Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(52): 17146-17150, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30395701

RESUMO

We describe a templating/covalent capture strategy that enables photochemical formation of 8 cyclobutanes in one noncovalent assembly. This process was characterized by experiment and quantum mechanical/molecular mechanics (ONIOM) calculations. Thus, KI and 16 units of 5'-cinnamate guanosine form a G-quadruplex where C=C π bonds in neighboring G4 -quartets are separated by 3.3 Å, enabling [2+2] photocycloaddition in solution. This reaction is high-yielding (>90 %), regio- and diastereoselective. Since all components are in dynamic equilibrium this photocycloaddition is catalytic in K+ .

2.
ACS Appl Mater Interfaces ; 14(19): 22407-22417, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35503369

RESUMO

Cross-linked polymeric networks that possess tunable properties and degrade on-demand have broad applications in today's society. Herein, we report on silyl-containing poly(urethane) (silyl-PU) thermoset networks, which are highly cross-linked stimuli-responsive materials with hydrolytic stability at 37.7 °C and 95% relative humidity, thermal stability of 280-311.2 °C, tensile properties of 0.38-51.7 MPa strength and 73.7-256.4% elongation, including storage modulus of 2268-3499 MPa (in the glassy state). However, unlike traditional (i.e., nondegradable) PU thermosets, these silyl-PUs selectively activate with fluoride ion under mild and static conditions to completely degrade, via cascading bond cleavages, and generate recoverable and reusable molecules. Silyl-PUs, as thin films, also demonstrated complete removal (within 30 min) from a strongly adhered epoxy thermoset network without altering the structure of the latter. Silyl-PU thermosets have potential applications in composite parts, vehicle and industrial coatings, and rigid plastics for personal devices, and may reduce environmental waste compared to nondegradable, single-use materials.

4.
Chem Commun (Camb) ; 52(74): 11112-5, 2016 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-27546216

RESUMO

We report on self-assembly of guanosines with aromatic esters at their 5'-position. Depending on the basicity of the 5'-ester either discrete octamers G8·K(+)I(-) or hexadecamers G16·3K(+)3I(-) are formed. The thermodynamic and kinetic stabilities of the G-quadruplex can be controlled by interlayer hydrogen-bonding and by dispersion interactions on the assembly's periphery.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa