Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncoimmunology ; 12(1): 2170095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733497

RESUMO

Indoleamine 2,3 dioxygenase 1 (IDO1), a leader tryptophan-degrading enzyme, represents a recognized immune checkpoint molecule. In neoplasia, IDO1 is often highly expressed in dendritic cells infiltrating the tumor and/or in tumor cells themselves, particularly in human melanoma. In dendritic cells, IDO1 does not merely metabolize tryptophan into kynurenine but, after phosphorylation of critical tyrosine residues in the non-catalytic small domain, it triggers a signaling pathway prolonging its immunoregulatory effects by a feed-forward mechanism. We here investigated whether the non-enzymatic function of IDO1 could also play a role in tumor cells by using B16-F10 mouse melanoma cells transfected with either the wild-type Ido1 gene (Ido1WT ) or a mutated variant lacking the catalytic, but not signaling activity (Ido1H350A ). As compared to the Ido1WT -transfected counterpart (B16WT), B16-F10 cells expressing Ido1H350A (B16H350A) were characterized by an in vitro accelerated growth mediated by increased Ras and Erk activities. Faster growth and malignant progression of B16H350A cells, also detectable in vivo, were found to be accompanied by a reduction in tumor-infiltrating CD8+ T cells and an increase in Foxp3+ regulatory T cells. Our data, therefore, suggest that the IDO1 signaling function can also occur in tumor cells and that alternative therapeutic approach strategies should be undertaken to effectively tackle this important immune checkpoint molecule.


Assuntos
Melanoma Experimental , Triptofano , Camundongos , Humanos , Animais , Linfócitos T CD8-Positivos/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proteínas de Checkpoint Imunológico , Melanoma Experimental/genética , Transdução de Sinais
2.
Sci Rep ; 9(1): 6910, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061480

RESUMO

This study aims to identify a panel of blood-cell neuroplasticity-related genes expressed following environmental enrichment stimulation (EE). The Drug detection (DD) training course was an excellent model for the study of EE in the working dog. This research is divided into two experimental trials. In the First Trial, we identified a panel of blood-cell neuroplasticity related-genes associated with DD ability acquired during the training course. In the Second Trial, we assessed the EE additional factor complementary feeding effect on blood-cell neuroplasticity gene expressions. In the First and Second Trials, at different time points of the DD test, blood samples were collected, and NGF, BDNF, VEGFA, IGF1, EGR1, NGFR, and ICE2 blood-cell neuroplasticity related-genes were analyzed. As noted in the First Trial, the DD test in working dogs induced the transient up-regulation of VEGFA, NGF, NGFR, BDNF, and IGF, immediately after the DD test, suggesting the existence of gene regulations. On the contrary, the Second Trial, with feeding implementation, showed an absence of mRNA up-regulation after the DD test. We suppose that complementary feeding alters the systemic metabolism, which, in turn, changes neuroplasticity-related gene blood-cell mRNA. These findings suggested that, in working dogs, there is a cross-talk between blood-cell neuroplasticity-related genes and environmental enrichment. These outcomes could be used to improve future treatments in sensory implementation.


Assuntos
Células Sanguíneas/metabolismo , Meio Ambiente , Perfilação da Expressão Gênica , Plasticidade Neuronal/genética , Animais , Comportamento Animal , Cães , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa