RESUMO
We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.
Assuntos
Vírus/ultraestrutura , Difração de Raios X , Lasers , Radiografia , Vírus/químicaRESUMO
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
Assuntos
Mimiviridae/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Elétrons , Temperatura Alta , Lasers , Fótons , Fatores de Tempo , Raios XRESUMO
We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.
Assuntos
Imageamento Tridimensional/métodos , Mimiviridae/ultraestrutura , Difração de Raios X/métodos , Algoritmos , Elétrons , Lasers , Difração de Raios X/instrumentaçãoRESUMO
The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e.g. for the European XFEL, which is expected to produce 100 million pulses per hour.
Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Teste de Materiais/métodos , Nanopartículas/ultraestrutura , Reconhecimento Automatizado de Padrão/métodos , Difração de Raios X/métodosRESUMO
We use a Mach-Zehnder type autocorrelator to split and delay XUV pulses from the FLASH soft X-ray laser for triggering and subsequently probing the explosion of aerosolised sugar balls. FLASH was running at 182 eV photon energy with pulses of 70 fs duration. The delay between the pump-probe pulses was varied between zero and 5 ps, and the pulses were focused to reach peak intensities above 10¹6W/cm² with an off-axis parabola. The direct pulse triggered the explosion of single aerosolised sucrose nano-particles, while the delayed pulse probed the exploding structure. The ejected ions were measured by ion time of flight spectrometry, and the particle sizes were measured by coherent diffractive imaging. The results show that sucrose particles of 560-1000 nm diameter retain their size for about 500 fs following the first exposure. Significant sample expansion happens between 500 fs and 1 ps. We present simulations to support these observations.
Assuntos
Elétrons , Imageamento Tridimensional/métodos , Lasers , Nanosferas/química , Análise Espectral/métodos , Sacarose/química , Simulação por Computador , Hidrogênio/química , Íons , Termodinâmica , Raios XRESUMO
Nanoparticle (NP) based contrast agents detectable via different imaging modalities (multimodal properties) provide a promising strategy for noninvasive diagnostics. Core-shell NPs combining optical and X-ray fluorescence properties as bioimaging contrast agents are presented. NPs developed earlier for X-ray fluorescence computed tomography (XFCT), based on ceramic molybdenum oxide (MoO2) and metallic rhodium (Rh) and ruthenium (Ru), are coated with a silica (SiO2) shell, using ethanolamine as the catalyst. The SiO2 coating method introduced here is demonstrated to be applicable to both metallic and ceramic NPs. Furthermore, a fluorophore (Cy5.5 dye) was conjugated to the SiO2 layer, without altering the morphological and size characteristics of the hybrid NPs, rendering them with optical fluorescence properties. The improved biocompatibility of the SiO2 coated NPs without and with Cy5.5 is demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the core-shell NPs are confirmed with confocal microscopy, allowing the intracellular localization of these NPs in vitro to be tracked and studied. In situ XFCT successfully showed the possibility of in vivo multiplexed bioimaging for multitargeting studies with minimum radiation dose. Combined optical and X-ray fluorescence properties empower these NPs as effective macroscopic and microscopic imaging tools.
Assuntos
Nanopartículas , Dióxido de Silício , Meios de Contraste , Corantes Fluorescentes , Raios XRESUMO
Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.
Assuntos
Acanthamoeba/virologia , Vírus de DNA/ultraestrutura , DNA Viral/genética , Genoma Viral , Vírus Gigantes/ultraestrutura , Vírion/ultraestrutura , Acanthamoeba/ultraestrutura , Biomassa , Vírus de DNA/genética , Vírus de DNA/crescimento & desenvolvimento , Vírus de DNA/isolamento & purificação , DNA Viral/biossíntese , Vírus Gigantes/genética , Vírus Gigantes/crescimento & desenvolvimento , Vírus Gigantes/isolamento & purificação , Interações Hospedeiro-Patógeno/genética , Fagossomos/ultraestrutura , Fagossomos/virologia , Microbiologia do Solo , Termogravimetria , Vacúolos/ultraestrutura , Vacúolos/virologia , Vírion/genética , Vírion/crescimento & desenvolvimento , Replicação Viral , Microtomografia por Raio-XRESUMO
X-ray fluorescence computed tomography (XFCT) is an emerging biomedical imaging technique, which demands the development of new contrast agents. Ruthenium (Ru) and rhodium (Rh) have spectrally attractive Kα edge energies, qualifying them as new XFCT bio-imaging probes. Metallic Ru and Rh nanoparticles are synthesized by polyol method, in the presence of a stabilizer. The effect of several reaction parameters, including reaction temperature time, precursor and stabilizer concentration, and stabilizer molecular weight, on the size of particles, were studied. Resultant materials were characterized in detail using XRD, TEM, FT-IR, DLS-zeta potential and TGA techniques. Ru particles in the size range of 1-3 nm, and Rh particles of 6-9 nm were obtained. At physiological pH, both material systems showed agglomeration into larger assemblies ranging from 12-104 nm for Ru and 25-50 nm for Rh. Cytotoxicity of the nanoparticles (NPs) was evaluated on macrophages and ovarian cancer cells, showing minimal toxicity in doses up to 50 µg/mL. XFCT performance was evaluated on a small-animal-sized phantom model, demonstrating the possibility of quantitative evaluation of the measured dose with an expected linear response. This work provides a detailed route for the synthesis, size control and characterization of two materials systems as viable contrast agents for XFCT bio-imaging.
RESUMO
Morphologically controllable synthesis of Rh nanoparticles (NPs) was achieved by the use of additives during polyol synthesis. The effect of salts and surfactant additives including PVP, sodium acetate, sodium citrate, CTAB, CTAC, and potassium bromide on Rh NPs morphology was investigated. When PVP was used as the only additive, trigonal NPs were obtained. Additives containing Br- ions (CTAB and KBr) resulted in NPs with a cubic morphology, while those with carboxyl groups (sodium citrate and acetate) formed spheroid NPs. The use of Cl- ions (CTAC) resulted in a mixture of polygon morphologies. Cytotoxicity of these NPs was evaluated on macrophages and ovarian cancer cell lines. Membrane integrity and cellular activity are both influenced to a similar extent, for both the cell lines, with respect to the morphology of Rh NPs. The cells exposed to trigonal Rh NPs showed the highest viability, among the NP series. Particles with a mixed polygon morphology had the highest cytotoxic impact, followed by cubic and spherical NPs. The Rh NPs were further demonstrated as contrast agents for X-ray fluorescence computed tomography (XFCT) in a small-animal imaging setting. This work provides a detailed route for the synthesis, morphology control, and characterization of Rh NPs as viable contrast agents for XFCT bio-imaging.
RESUMO
Intense x-ray free-electron laser (XFEL) pulses hold great promise for imaging function in nanoscale and biological systems with atomic resolution. So far, however, the spatial resolution obtained from single shot experiments lags averaging static experiments. Here we report on a combined computational and experimental study about ultrafast diffractive imaging of sucrose clusters which are benchmark organic samples. Our theoretical model matches the experimental data from the water window to the keV x-ray regime. The large-scale dynamic scattering calculations reveal that transient phenomena driven by non-linear x-ray interaction are decisive for ultrafast imaging applications. Our study illuminates the complex interplay of the imaging process with the rapidly changing transient electronic structures in XFEL experiments and shows how computational models allow optimization of the parameters for ultrafast imaging experiments.
RESUMO
Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited. The diffraction data were collected at the Atomic, Molecular and Optical Science Instrument (AMO) of the LCLS in 4 experimental beam times during a period of four years. The photon energy was either 1.2 or 1.7 keV and the pulse energy was between 2 and 4 mJ in a focal spot of about 1.3 µm x 1.7 µm full width at half maximum (FWHM). The X-ray laser pulses captured the particles in random orientations. The data offer insight into aerosolised virus particles in the gas phase, contain information relevant to improving experimental parameters, and provide a basis for developing algorithms for image analysis and reconstruction.
Assuntos
Colífagos , Lasers , Aceleradores de Partículas , Vírion , Difração de Raios XRESUMO
Bacteriophage PR772, a member of the Tectiviridae family, has a 70 nm diameter icosahedral protein capsid that encapsulates a lipid membrane, dsDNA, and various internal proteins. An icosahedrally averaged CryoEM reconstruction of the wild-type virion and a localized reconstruction of the vertex region reveal the composition and the structure of the vertex complex along with new protein conformations that play a vital role in maintaining the capsid architecture of the virion. The overall resolution of the virion is 2.75 Å, while the resolution of the protein capsid is 2.3 Å. The conventional penta-symmetron formed by the capsomeres is replaced by a large vertex complex in the pseudo T = 25 capsid. All the vertices contain the host-recognition protein, P5; two of these vertices show the presence of the receptor-binding protein, P2. The 3D structure of the vertex complex shows interactions with the viral membrane, indicating a possible mechanism for viral infection.
Assuntos
Bacteriófagos/ultraestrutura , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Tectiviridae/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Processamento de Imagem Assistida por Computador , Conformação ProteicaRESUMO
[This corrects the article DOI: 10.1107/S2052252517003591.].
RESUMO
The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.
RESUMO
Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000â nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40â nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500â nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.
RESUMO
Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers. The most distinct feature of the particle is a large and dense body (LDB) consistently found inside all particles. Electron cryo-tomography of 147 particles shows that the LDB is preferentially located in proximity to the probable lipid bilayer. The LDB is 30â¯nm in size and its density matches that of a genome/protein complex. The observed LDB reinforces the structural complexity of MelV, setting it apart from other NCLDVs.
Assuntos
Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Vírion/fisiologia , Vírion/ultraestrutura , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus de DNA/genética , Genoma Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Montagem de VírusRESUMO
Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.
RESUMO
Cephamycin C-producing microorganisms use two enzymes to convert cephalosporins to their 7alpha-methoxy derivatives. Here we report the X-ray structure of one of these enzymes, CmcI, from Streptomyces clavuligerus. The polypeptide chain of the enzyme folds into a C-terminal Rossmann domain and a smaller N-terminal domain, and the molecule packs as a hexamer in the crystal. The Rossmann domain binds S-adenosyl-L-methionine (SAM) and the demethylated product, S-adenosyl-L-homocysteine, in a fashion similar to the common binding mode of this cofactor in SAM-dependent methyltransferases. There is a magnesium-binding site in the vicinity of the SAM site with a bound magnesium ion ligated by residues Asp160, Glu186 and Asp187. The expected cephalosporin binding site near the magnesium ion is occupied by polyethyleneglycol (PEG) from the crystallisation medium. The geometry of the SAM and the magnesium binding sites is similar to that found in cathechol O-methyltransferase. The results suggest CmcI is a methyltransferase, and its most likely function is to catalyse the transfer of a methyl group from SAM to the 7alpha-hydroxy cephalosporin in the second catalytic reaction of cephamycin formation. Based on the docking of the putative substrate, 7alpha-hydroxy-O-carbamoyldeacetylcephalosporin C, to the structure of the ternary CmcI-Mg2+-SAM complex, we propose a model for substrate binding and catalysis. In this model, the 7-hydroxy group of the beta-lactam ring ligates the Mg2+ with its alpha-side facing the methyl group of SAM at a distance that would allow methylation of the hydroxyl-group.
Assuntos
Proteínas de Bactérias/biossíntese , Cefamicinas/biossíntese , Metiltransferases/química , Oxigenases de Função Mista/química , Complexos Multienzimáticos/química , Streptomyces/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cefalosporinas/metabolismo , Cristalização , Cristalografia por Raios X , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Polietilenoglicóis , Ligação Proteica , Estrutura Terciária de Proteína , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Homologia de Sequência de AminoácidosRESUMO
The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 µm in length and 0.9 µm in diameter. These particles show significant variations in size. Little is known about the structure of the intact virion due to technical limitations with conventional electron cryo-microscopy (cryo-EM) when imaging thick specimens. Here we present the intact structure of the giant Pithovirus sibericum particle at near native conditions using high-voltage electron cryo-tomography (cryo-ET) and energy-filtered cryo-EM. We detected a previously undescribed low-density outer layer covering the tegument and a periodical structuring of the fibres in the striated apical cork. Energy-filtered Zernike phase-contrast cryo-EM images show distinct substructures inside the particles, implicating an internal compartmentalisation. The density of the interior volume of Pithovirus particles is three quarters lower than that of the Mimivirus. However, it is remarkably high given that the 600 kbp Pithovirus genome is only half the size of the Mimivirus genome and is packaged in a volume up to 100 times larger. These observations suggest that the interior is densely packed with macromolecules in addition to the genomic nucleic acid.
Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Vírion/ultraestrutura , Vírus/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Imageamento TridimensionalRESUMO
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of â¼40â nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from â¼35 to â¼300â nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500â nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25â nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.