Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Microdevices ; 17(2): 29, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681047

RESUMO

Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.


Assuntos
Coloides/isolamento & purificação , Eletroforese/instrumentação , Eletroforese/métodos , Coloides/química , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Microeletrodos , Microtecnologia , Tamanho da Partícula
2.
Analyst ; 140(10): 3630-41, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25869990

RESUMO

To operate an ion-sensitive field-effect transistor (ISFETs) it is necessary to set the electrolyte potential using a reference electrode. Conventional reference electrodes are bulky, fragile, and too big for applications where the electrolyte volume is small. Several researchers have proposed tackling this issue using a solid-state planar micro-reference electrode or a reference field-effect transistor. However, these approaches are limited by poor robustness, high cost, or complex integration with other microfabrication processes. Here we report a simple method to create robust on-chip quasi-reference electrodes by electrodepositing polypyrrole on micro-patterned metal leads. The electrodes were fabricated through the polymerization of pyrrole on patterned metals with a cyclic voltammetry process. Open circuit potential measurements were performed to characterize the polypyrrole electrode performance, demonstrating good stability (±1 mV), low drift (∼1 mV h(-1)), and reduced pH response (5 mV per pH). In addition, the polypyrrole deposition was repeated in microelectrodes made of different metals to test compatibility with standard complementary metal-oxide-semiconductor (CMOS) processes. Our results suggest that nickel, a metal commonly used in semiconductor foundries for silicide formation, is a good candidate to form the polypyrrole quasi-reference electrodes. Finally, the polypyrrole microelectrodes were used to operate foundry fabricated ISFETs. These experiments demonstrated that transistors biased with polypyrrole electrodes have pH sensitivity and resolution comparable to ones that are biased with standard reference electrodes. Therefore, the simple fabrication, high compatibility, and robust electrical performance make polypyrrole an ideal choice for the fabrication of outstanding microreference electrodes that enable robust and sensitive operation of multiple ISFET sensors on a chip.


Assuntos
Dispositivos Lab-On-A-Chip , Metais/química , Polímeros/química , Pirróis/química , Transistores Eletrônicos , Concentração de Íons de Hidrogênio , Microeletrodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa