Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 80(19): 5901-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25002435

RESUMO

Microbial abundance is central to most investigations in microbial ecology, and its accurate measurement is a challenging task that has been significantly facilitated by the advent of molecular techniques over the last 20 years. Fluorescence in situ hybridization (FISH) is considered the gold standard of quantification techniques; however, it is expensive and offers low sample throughput, both of which limit its wider application. Quantitative PCR (qPCR) is an alternative that offers significantly higher throughput, and it is used extensively in molecular biology. The accuracy of qPCR can be compromised by biases in the DNA extraction and amplification steps. In this study, we compared the accuracy of these two established quantification techniques to measure the abundance of a key functional group in biological wastewater treatment systems, the ammonia-oxidizing bacteria (AOB), in samples from a time-series experiment monitoring a set of laboratory-scale reactors and a full-scale plant. For the qPCR analysis, we tested two different sets of AOB-specific primers, one targeting the 16SrRNA gene and one targeting the ammonia monooxygenase (amoA) gene. We found that there was a positive linear logarithmic relationship between FISH and the amoA gene-specific qPCR, where the data obtained from both techniques was equivalent at the order of magnitude level. The 16S rRNA gene-specific qPCR assay consistently underestimated AOB numbers.


Assuntos
Bactérias/isolamento & purificação , Hibridização in Situ Fluorescente/métodos , Oxirredutases/genética , Reação em Cadeia da Polimerase/métodos , Esgotos/microbiologia , Amônia/metabolismo , Bactérias/enzimologia , Bactérias/genética , Betaproteobacteria/enzimologia , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Modelos Lineares , Oxirredução , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie , Eliminação de Resíduos Líquidos
2.
Water Res ; 152: 264-273, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682570

RESUMO

Viruses are thought to control bacterial abundance, affect community composition and influence ecosystem function in natural environments. Yet their dynamics have seldom been studied in engineered systems, or indeed in any system, for long periods of time. We measured virus abundance in a full-scale activated sludge plant every week for two years. Total bacteria and ammonia oxidising bacteria (AOB) abundances, bacterial community profiles, and a suite of environmental and operational parameters were also monitored. Mixed liquor virus abundance fluctuated over an order of magnitude (3.18 × 108-3.41 × 109 virus's mL-1) and that variation was statistically significantly associated with total bacterial and AOB abundance, community composition, and effluent concentrations of COD and NH4+- N and thus system function. This suggests viruses play a far more important role in the dynamics of activated sludge systems than previously realised and could be one of the key factors controlling bacterial abundance, community structure and functional stability and may cause reactors to fail. These findings are based on statistical associations, not mechanistic models. Nevertheless, viral associations with abiotic factors, such as pH, make physical sense, giving credence to these findings and highlighting the role that physical factors play in virus ecology. Further work is needed to identify and quantify specific bacteriophage and their hosts to enable us to develop mechanistic models of the ecology of viruses in wastewater treatment systems. However, since we have shown that viruses can be related to effluent quality and virus quantification is simple and cheap, practitioners would probably benefit from quantifying viruses now.


Assuntos
Ecossistema , Vírus , Amônia , Bactérias , Esgotos , Águas Residuárias
3.
Planta ; 157(2): 158-65, 1983 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24264070

RESUMO

Mutant lines of Arabidopsis thaliana (L.) Heynh., which are characterized by symptoms of withering and the absence of seed dormancy, showed much lower levels of endogenous abscisic acid (ABA) in developing seeds and fruits (siliquae) than the wild type. Reciprocal crosses of wild type and ABA-deficient mutants showed a dual origin of ABA in developing seeds. The genotype of the mother plant regulated a sharp rise in ABA content half-way seed development (maternal ABA). The genotype of the embryo and endosperm was responsible for a second ABA fraction (embryonic ABA), which reached much lower levels, but persisted for some time after the maximum in maternal ABA. The onset of dormancy correlated well with the presence of the embryonic ABA fraction and not with the maternal ABA. Dormancy developed in both the absence and presence of maternal ABA in the seeds. In this respect maternal ABA resembled exogenously applied ABA which did not induce dormancy in ABA-deficient seeds. However, both maternal and applied ABA stimulated the formation of a mucilage layer around the testa, which could be observed during imbibition of the mature seeds. In the mature state, ABA-deficient seeds germinated in the siliquae on the plant, but only when the atmosphere surrounding the plant was kept at high relative humidity. In younger stages germination in siliquae occurred after isolation from the plants and incubation on wet filter paper. Therefore, it seems that limited access to water is the primary trigger for the developmental arrest in these seeds.

4.
Theor Appl Genet ; 61(4): 385-93, 1982 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24270501

RESUMO

By selecting for germinating seeds in the progeny of mutagen-treated non-germinating gibberellin responsive dwarf mutants of the ga-1 locus in Arabidopsis thaliana, germinating lines (revertants) could be isolated. About half of the revertants were homozygous recessive for a gene (aba), which probably regulates the presence of abscisic acid (ABA). Arguments for the function of this gene were obtained from lines homozygous recessive for this locus only, obtained by selection from the F2 progeny of revertant X wild-type crosses. These lines are characterized by a reduced seed dormancy, symptoms of withering, increased transpiration and a lowered ABA content in developing and ripe seeds and leaves.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa