Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 101(1): 24-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689119

RESUMO

DNA topoisomerases regulate the topological state of DNA, relaxing DNA supercoils and resolving catenanes and knots that result from biologic processes, such as transcription and replication. DNA topoisomerase II (TOP2) enzymes achieve this by binding DNA and introducing an enzyme-bridged DNA double-strand break (DSB) where each protomer of the dimeric enzyme is covalently attached to the 5' end of the cleaved DNA via an active site tyrosine phosphodiester linkage. The enzyme then passes a second DNA duplex through the DNA break, before religation and release of the enzyme. However, this activity is potentially hazardous to the cell, as failure to complete religation leads to persistent TOP2 protein-DNA covalent complexes, which are cytotoxic. Indeed, this property of topoisomerase has been exploited in cancer therapy in the form of topoisomerase poisons which block the religation stage of the reaction cycle, leading to an accumulation of topoisomerase-DNA adducts. A number of parallel cellular processes have been identified that lead to removal of these covalent TOP2-DNA complexes, facilitating repair of the resulting protein-free DSB by standard DNA repair pathways. These pathways presumably arose to repair spontaneous stalled or poisoned TOP2-DNA complexes, but understanding their mechanisms also has implications for cancer therapy, particularly resistance to anti-cancer TOP2 poisons and the genotoxic side effects of these drugs. Here, we review recent progress in the understanding of the processing of TOP2 DNA covalent complexes, the basic components and mechanisms, as well as the additional layer of complexity posed by the post-translational modifications that modulate these pathways. SIGNIFICANCE STATEMENT: Multiple pathways have been reported for removal and repair of TOP2-DNA covalent complexes to ensure the timely and efficient repair of TOP2-DNA covalent adducts to protect the genome. Post-translational modifications, such as ubiquitination and SUMOylation, are involved in the regulation of TOP2-DNA complex repair. Small molecule inhibitors of these post-translational modifications may help to improve outcomes of TOP2 poison chemotherapy, for example by increasing TOP2 poison cytotoxicity and reducing genotoxicity, but this remains to be determined.


Assuntos
Reparo do DNA/fisiologia , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Quebras de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Reparo do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia
2.
Mol Pharmacol ; 100(1): 57-62, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33941661

RESUMO

DNA topoisomerase II (TOP2) poisons induce protein-DNA crosslinks termed TOP2-DNA covalent complexes, in which TOP2 remains covalently bound to each end of an enzyme-induced double-strand DNA break (DSB) via a 5'-phosphotyrosyl bond. Repair of the enzyme-induced DSB first requires the removal of the TOP2 protein adduct, which, among other mechanisms, can be accomplished through the proteasomal degradation of TOP2. VCP/p97 is a AAA ATPase that utilizes energy from ATP hydrolysis to unfold protein substrates, which can facilitate proteasomal degradation by extracting target proteins from certain cellular structures (such as chromatin) and/or by aiding their translocation into the proteolytic core of the proteasome. In this study, we show that inhibition of VCP/p97 leads to the prolonged accumulation of etoposide-induced TOP2A and TOP2B complexes in a manner that is epistatic with the proteasomal pathway. VCP/p97 inhibition also reduces the etoposide-induced phosphorylation of histone H2A.X, indicative of fewer DSBs. This suggests that VCP/p97 is required for the proteasomal degradation of TOP2-DNA covalent complexes and is thus likely to be an important mediator of DSB repair after treatment with a TOP2 poison. SIGNIFICANCE STATEMENT: TOP2 poisons are chemotherapeutic agents used in the treatment of a range of cancers. A better understanding of how TOP2 poison-induced DNA damage is repaired could improve therapy with TOP2 poisons by increasing TOP2 poison cytotoxicity and reducing genotoxicity. The results presented herein suggest that repair of TOP2-DNA covalent complexes involves the protein segregase VCP/p97.


Assuntos
Acetanilidas/farmacologia , Benzotiazóis/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Etoposídeo/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteína com Valosina/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Hidrólise , Células K562 , Fosforilação , Dobramento de Proteína , Estabilidade Proteica , Proteína com Valosina/genética
3.
Mol Pharmacol ; 98(3): 222-233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32587095

RESUMO

DNA topoisomerase II (TOP2) is required for the unwinding and decatenation of DNA through the induction of an enzyme-linked double-strand break (DSB) in one DNA molecule and passage of another intact DNA duplex through the break. Anticancer drugs targeting TOP2 (TOP2 poisons) prevent religation of the DSB and stabilize a normally transient intermediate of the TOP2 reaction mechanism called the TOP2-DNA covalent complex. Subsequently, TOP2 remains covalently bound to each end of the enzyme-bridged DSB, which cannot be repaired until TOP2 is removed from the DNA. One removal mechanism involves the proteasomal degradation of the TOP2 protein, leading to the liberation of a protein-free DSB. Proteasomal degradation is often regulated by protein ubiquitination, and here we show that inhibition of ubiquitin-activating enzymes reduces the processing of TOP2A- and TOP2B-DNA complexes. Depletion or inhibition of ubiquitin-activating enzymes indicated that ubiquitination was required for the liberation of etoposide-induced protein-free DSBs and is therefore an important layer of regulation in the repair of TOP2 poison-induced DNA damage. TOP2-DNA complexes stabilized by etoposide were shown to be conjugated to ubiquitin, and this was reduced by inhibition or depletion of ubiquitin-activating enzymes. SIGNIFICANCE STATEMENT: There is currently great clinical interest in the ubiquitin-proteasome system and ongoing development of specific inhibitors. The results in this paper show that the therapeutic cytotoxicity of DNA topoisomerase II (TOP2) poisons can be enhanced through combination therapy with ubiquitin-activating enzyme inhibitors or by specific inhibition of the BMI/RING1A ubiquitin ligase, which would lead to increased cellular accumulation or persistence of TOP2-DNA complexes.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Nucleosídeos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Sulfonamidas/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Linhagem Celular , DNA/metabolismo , DNA Topoisomerases Tipo II/química , Humanos , Células K562 , Proteínas de Ligação a Poli-ADP-Ribose/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Pirazóis , Pirimidinas , Sulfetos , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
4.
Mol Pharmacol ; 96(4): 475-484, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399497

RESUMO

Topoisomerase II (TOP2) poisons are effective cytotoxic anticancer agents that stabilize the normally transient TOP2-DNA covalent complexes formed during the enzyme reaction cycle. These drugs include etoposide, mitoxantrone, and the anthracyclines doxorubicin and epirubicin. Anthracyclines also exert cell-killing activity via TOP2-independent mechanisms, including DNA adduct formation, redox activity, and lipid peroxidation. Here, we show that anthracyclines and another intercalating TOP2 poison, mitoxantrone, stabilize TOP2-DNA covalent complexes less efficiently than etoposide, and at higher concentrations they suppress the formation of TOP2-DNA covalent complexes, thus behaving as TOP2 poisons at low concentration and inhibitors at high concentration. We used induced pluripotent stem cell (iPSC)-derived human cardiomyocytes as a model to study anthracycline-induced damage in cardiac cells. Using immunofluorescence, our study is the first to demonstrate the presence of topoisomerase IIß (TOP2B) as the only TOP2 isoform in iPSC-derived cardiomyocytes. In these cells, etoposide robustly induced TOP2B covalent complexes, but we could not detect doxorubicin-induced TOP2-DNA complexes, and doxorubicin suppressed etoposide-induced TOP2-DNA complexes. In vitro, etoposide-stabilized DNA cleavage was attenuated by doxorubicin, epirubicin, or mitoxantrone. Clinical use of anthracyclines is associated with cardiotoxicity. The observations in this study have potentially important clinical consequences regarding the effectiveness of anticancer treatment regimens when TOP2-targeting drugs are used in combination. These observations suggest that inhibition of TOP2B activity, rather than DNA damage resulting from TOP2 poisoning, may play a role in doxorubicin cardiotoxicity. SIGNIFICANCE STATEMENT: We show that anthracyclines and mitoxantrone act as topoisomerase II (TOP2) poisons at low concentration but attenuate TOP2 activity at higher concentration, both in cells and in in vitro cleavage experiments. Inhibition of type II topoisomerases suppresses the action of other drugs that poison TOP2. Thus, combinations containing anthracyclines or mitoxantrone and etoposide may reduce the activity of etoposide as a TOP2 poison and thus reduce the efficacy of drug combinations.


Assuntos
Antraciclinas/farmacologia , Adutos de DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Mitoxantrona/farmacologia , Cardiotoxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/efeitos adversos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células K562 , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores da Topoisomerase II/farmacologia
5.
Mol Pharmacol ; 96(5): 562-572, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31515282

RESUMO

2,6-Diaminopyridine-3,5-bis(thiocyanate) (PR-619) is a broad-spectrum deubiquitinating enzyme (DUB) inhibitor that has been employed in cell-based studies as a tool to investigate the role of ubiquitination in various cellular processes. Here, we demonstrate that in addition to its action as a DUB inhibitor, PR-619 is a potent DNA topoisomerase II (TOP2) poison, inducing both DNA topoisomerase IIα (TOP2A) and DNA topoisomerase IIß (TOP2B) covalent DNA complexes with similar efficiency to the archetypal TOP2 poison etoposide. However, in contrast to etoposide, which induces TOP2-DNA complexes with a pan-nuclear distribution, PR-619 treatment results in nucleolar concentration of TOP2A and TOP2B. Notably, neither the induction of TOP2-DNA covalent complexes nor their nucleolar concentration are due to TOP2 hyperubiquitination since both occur even under conditions of depleted ubiquitin. Like etoposide, since PR-619 affected TOP2 enzyme activity in in vitro enzyme assays as well as in live cells, we conclude that PR-619 interacts directly with TOP2A and TOP2B. The concentration at which PR-619 exhibits robust cellular DUB inhibitor activity (5-20 µM) is similar to the lowest concentration at which TOP2 poison activity was detected (above 20 µM), which suggests that caution should be exercised when employing this DUB inhibitor in cell-based studies.


Assuntos
Aminopiridinas/farmacologia , Aminopiridinas/intoxicação , DNA Topoisomerases Tipo II/biossíntese , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/biossíntese , Tiocianatos/farmacologia , Tiocianatos/intoxicação , Células HeLa , Humanos , Células K562 , Proteínas de Ligação a Poli-ADP-Ribose/agonistas
6.
Int J Mol Sci ; 19(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011940

RESUMO

DNA topoisomerase II (TOP2) activity involves a normally transient double-strand break intermediate in which the enzyme is coupled to DNA via a 5'-phosphotyrosyl bond. However, etoposide and other topoisomerase drugs poison the enzyme by stabilising this enzyme-bridged break, resulting in the accumulation of TOP2-DNA covalent complexes with cytotoxic consequences. The phosphotyrosyl diesterase TDP2 appears to be required for efficient repair of this unusual type of DNA damage and can remove 5'-tyrosine adducts from a double-stranded oligonucleotide substrate. Here, we adapt the trapped in agarose DNA immunostaining (TARDIS) assay to investigate the role of TDP2 in the removal of TOP2-DNA complexes in vitro and in cells. We report that TDP2 alone does not remove TOP2-DNA complexes from genomic DNA in vitro and that depletion of TDP2 in cells does not slow the removal of TOP2-DNA complexes. Thus, if TDP2 is involved in repairing TOP2 adducts, there must be one or more prior steps in which the protein-DNA complex is processed before TDP2 removes the remaining 5' tyrosine DNA adducts. While this is partly achieved through the degradation of TOP2 adducts by the proteasome, a proteasome-independent mechanism has also been described involving the SUMOylation of TOP2 by the ZATT E3 SUMO ligase. The TARDIS assay was also adapted to measure the effect of TDP2 knockdown on levels of SUMOylated TOP2-DNA complexes, which together with levels of double strand breaks were unaffected in K562 cells following etoposide exposure and proteasomal inhibition.


Assuntos
Reparo do DNA , DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fatores de Transcrição/metabolismo , DNA/genética , Adutos de DNA/genética , Adutos de DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA , Etoposídeo/farmacologia , Humanos , Células K562 , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Interferência de RNA , Sumoilação , Inibidores da Topoisomerase II/farmacologia , Fatores de Transcrição/genética
7.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223465

RESUMO

Type II DNA topoisomerases (EC 5.99.1.3) are enzymes that catalyse topological changes in DNA in an ATP dependent manner. Strand passage reactions involve passing one double stranded DNA duplex (transported helix) through a transient enzyme-bridged break in another (gated helix). This activity is required for a range of cellular processes including transcription. Vertebrates have two isoforms: topoisomerase IIα and ß. Topoisomerase IIß was first reported in 1987. Here we review the research on DNA topoisomerase IIß over the 30 years since its discovery.


Assuntos
DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Pesquisa , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ciclo Celular/genética , Clonagem Molecular , DNA Topoisomerases Tipo II/química , DNA Complementar/química , DNA Complementar/genética , Expressão Gênica , Regulação da Expressão Gênica , História do Século XX , História do Século XXI , Humanos , Espaço Intracelular/metabolismo , Isoenzimas , Terapia de Alvo Molecular , Ligação Proteica , Transporte Proteico , Pesquisa/história , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa