Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(18): 3347-3359.e9, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37647899

RESUMO

The amino acid cysteine and its oxidized dimeric form cystine are commonly believed to be synonymous in metabolic functions. Cyst(e)ine depletion not only induces amino acid response but also triggers ferroptosis, a non-apoptotic cell death. Here, we report that unlike general amino acid starvation, cyst(e)ine deprivation triggers ATF4 induction at the transcriptional level. Unexpectedly, it is the shortage of lysosomal cystine, but not the cytosolic cysteine, that elicits the adaptative ATF4 response. The lysosome-nucleus signaling pathway involves the aryl hydrocarbon receptor (AhR) that senses lysosomal cystine via the kynurenine pathway. A blockade of lysosomal cystine efflux attenuates ATF4 induction and sensitizes ferroptosis. To potentiate ferroptosis in cancer, we develop a synthetic mRNA reagent, CysRx, that converts cytosolic cysteine to lysosomal cystine. CysRx maximizes cancer cell ferroptosis and effectively suppresses tumor growth in vivo. Thus, intracellular nutrient reprogramming has the potential to induce selective ferroptosis in cancer without systematic starvation.


Assuntos
Cistos , Ferroptose , Humanos , Cisteína , Cistina , Ferroptose/genética , Aminoácidos , Lisossomos
2.
Annu Rev Nutr ; 40: 51-75, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32631146

RESUMO

The emergence of genome-wide analyses to interrogate cellular DNA, RNA, and protein content has revolutionized the study of control networks that mediate cellular homeostasis. mRNA translation represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are orchestrated by nutrient signaling pathways. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during nutrient stress by translation of selective mRNAs. In this review, we describe recent advances in our understanding of translational control principles; nutrient-sensing mechanisms; and their dysregulation in human diseases such as diabetes, cancer, and aging. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Nutrientes/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética
3.
Environ Sci Technol ; 54(16): 10149-10158, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32674564

RESUMO

1,4-Dioxane is a widely used industrial solvent that has been frequently detected in aquatic environments. However, the hepatotoxicity of long-term dioxane exposure at environmentally relevant concentrations and underlying mechanisms of liver damage remain unclear. In this study, male mice were exposed to dioxane at concentrations of 0.5, 5, 50, and 500 ppm for 12 weeks, followed by histopathological examination of liver sections and multiomics investigation of the hepatic transcriptome, serum metabolome, and gut microbiome. Results showed that dioxane exposure at environmentally relevant concentrations induced hepatic inflammation and caused changes in the hepatic transcriptome and serum metabolic profiles. However, no inflammatory response was observed after in vitro exposure to all concentrations of dioxane and its in vivo metabolites. The gut microbiome was considered to be contributing to this apparently contradictory response. Increased levels of lipopolysaccharide (LPS) may be produced by some gut microbiota, such as Porphyromonadaceae and Helicobacteraceae, after in vivo 500 ppm of dioxane exposure. LPS may enter the blood circulation through an impaired intestinal wall and aggravate hepatic inflammation in mice. This study provides novel insight into the underlying mechanisms of hepatic inflammation induced by dioxane and highlights the need for concerns about environmentally relevant concentrations of dioxane exposure.


Assuntos
Microbioma Gastrointestinal , Animais , Dioxanos , Inflamação/induzido quimicamente , Fígado , Masculino , Camundongos
4.
Angew Chem Int Ed Engl ; 59(32): 13391-13400, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32396709

RESUMO

Rhenium tricarbonyl complexes have been recently investigated as novel anticancer agents. However, little is understood about their mechanisms of action, as well as the means by which cancer cells respond to chronic exposure to these compounds. To gain a deeper mechanistic insight into these rhenium anticancer agents, we developed and characterized an ovarian cancer cell line that is resistant to a previously studied compound [Re(CO)3 (dmphen)(ptolICN)]+ , where dmphen=2,9-dimethyl-1,10-phenanthroline and ptolICN=para-tolyl isonitrile, called TRIP. This TRIP-resistant ovarian cancer cell line, A2780TR, was found to be 9 times less sensitive to TRIP compared to the wild-type A2780 ovarian cancer cell line. Furthermore, the cytotoxicities of established drugs and other rhenium anticancer agents in the TRIP-resistant cell line were determined. Notably, the drug taxol was found to exhibit a 184-fold decrease in activity in the A2780TR cell line, suggesting that mechanisms of resistance towards TRIP and this drug are similar. Accordingly, expression levels of the ATP-binding cassette transporter P-glycoprotein, an efflux transporter known to detoxify taxol, were found to be elevated in the A2780TR cell line. Additionally, a gene expression analysis using the National Cancer Institute 60 cell line panel identified the MT1E gene to be overexpressed in cells that are less sensitive to TRIP. Because this gene encodes for metallothioneins, this result suggests that detoxification by this class of proteins is another mechanism for resistance to TRIP. The importance of this gene in the A2780TR cell line was assessed, confirming that its expression is elevated in this cell line as well. As the first study to investigate and identify the cancer cell resistance pathways in response to a rhenium complex, this report highlights important similarities and differences in the resistance responses of ovarian cancer cells to TRIP and conventional drugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Metalotioneína/genética , Metalotioneína/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Rênio/química , Verapamil/farmacologia
5.
Chemistry ; 25(39): 9206-9210, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31090971

RESUMO

Complexes of the element Re have recently been shown to possess promising anticancer activity through mechanisms of action that are distinct from the conventional metal-based drug cisplatin. In this study, we report our investigations on the anticancer activity of the complex [Re(CO)3 (dmphen)(p-tol-ICN)]+ (TRIP) in which dmphen=2,9-dimethyl-1,10-phenanthroline and p-tol-ICN=para-tolyl isonitrile. TRIP was synthesized by literature methods and exhaustively characterized. This compound exhibited potent in vitro anticancer activity in a wide variety of cell lines. Flow cytometry and immunostaining experiments indicated that TRIP induces intrinsic apoptosis. Comprehensive biological mechanistic studies demonstrated that this compound triggers the accumulation of misfolded proteins, which causes endoplasmic reticulum (ER) stress, the unfolded protein response, and apoptotic cell death. Furthermore, TRIP induced hyperphosphorylation of eIF2α, translation inhibition, mitochondrial fission, and expression of proapoptotic ATF4 and CHOP. These results establish TRIP as a promising anticancer agent based on its potent cytotoxic activity and ability to induce ER stress.


Assuntos
Apoptose , Complexos de Coordenação/química , Rênio/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Humanos , Conformação Molecular , Nitrilas/química , Fosforilação/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Nat Commun ; 12(1): 1589, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707434

RESUMO

Glutathione peroxidase 4 (GPX4) utilizes glutathione (GSH) to detoxify lipid peroxidation and plays an essential role in inhibiting ferroptosis. As a selenoprotein, GPX4 protein synthesis is highly inefficient and energetically costly. How cells coordinate GPX4 synthesis with nutrient availability remains unclear. In this study, we perform integrated proteomic and functional analyses to reveal that SLC7A11-mediated cystine uptake promotes not only GSH synthesis, but also GPX4 protein synthesis. Mechanistically, we find that cyst(e)ine activates mechanistic/mammalian target of rapamycin complex 1 (mTORC1) and promotes GPX4 protein synthesis at least partly through the Rag-mTORC1-4EBP signaling axis. We show that pharmacologic inhibition of mTORC1 decreases GPX4 protein levels, sensitizes cancer cells to ferroptosis, and synergizes with ferroptosis inducers to suppress patient-derived xenograft tumor growth in vivo. Together, our results reveal a regulatory mechanism to coordinate GPX4 protein synthesis with cyst(e)ine availability and suggest using combinatorial therapy of mTORC1 inhibitors and ferroptosis inducers in cancer treatment.


Assuntos
Cisteína/metabolismo , Cistina/metabolismo , Ferroptose/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Glutationa/metabolismo , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neoplasias/patologia
7.
Angew Chem Weinheim Bergstr Ger ; 132(32): 13493-13502, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34366495

RESUMO

Rhenium tricarbonyl complexes have been recently investigated as novel anticancer agents. However, little is understood about their mechanisms of action, as well as the means by which cancer cells respond to chronic exposure to these compounds. To gain a deeper mechanistic insight into these rhenium anticancer agents, we developed and characterized an ovarian cancer cell line that is resistant to a previously studied compound [Re(CO)3(dmphen)(ptolICN)]+, where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, called TRIP. This TRIP-resistant ovarian cancer cell line, A2780TR, was found to be 9 times less sensitive to TRIP compared to the wild-type A2780 ovarian cancer cell line. Furthermore, the cytotoxicities of established drugs and other rhenium anticancer agents in the TRIP-resistant cell line were determined. Notably, the drug taxol was found to exhibit a 184-fold decrease in activity in the A2780TR cell line, suggesting that mechanisms of resistance towards TRIP and this drug are similar. Accordingly, expression levels of the ATP-binding cassette transporter P-glycoprotein, an efflux transporter known to detoxify taxol, were found to be elevated in the A2780TR cell line. Additionally, a gene expression analysis using the National Cancer Institute 60 cell line panel identified the MT1E gene to be overexpressed in cells that are less sensitive to TRIP. Because this gene encodes for metallothioneins, this result suggests that detoxification by this class of proteins is another mechanism for resistance to TRIP. The importance of this gene in the A2780TR cell line was assessed, confirming that its expression is elevated in this cell line as well. As the first study to investigate and identify the cancer cell resistance pathways in response to a rhenium complex, this report high-lights important similarities and differences in the resistance responses of ovarian cancer cells to TRIP and conventional drugs.

8.
Chemosphere ; 228: 149-158, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029960

RESUMO

1,4-Dioxane (dioxane), an industrial solvent widely detected in environmental and biological matrices, has potential nephrotoxicity. However, the underlying mechanism by which dioxane induces kidney damage remains unclear. In this study, we used an integrated approach, combining kidney transcriptomics and urine metabolomics, to explore the mechanism for the toxic effects of dioxane on the mouse kidney. Transcriptomics profiling showed that exposure to 0.5 mg/L dioxane induced perturbations of multiple signaling pathways in kidneys, such as MAPK and Wnt, although no changes in oxidative stress indicators or anatomical pathology were observed. Exposure to 500 mg/L dioxane significantly disrupted various metabolic pathways, concomitantly with observed renal tissue damage and stimulated oxidant defense system. Urine metabolomic analysis using NMR indicated that exposure to dioxane gradually altered the metabolic profile of urine. Within the full range of altered metabolites, the metabolic pathway containing glycine, serine and threonine was the most significantly altered pathway at the early stage of exposure (3 weeks) in both 0.5 and 500 mg/L dioxane-treated groups. However, with prolonged exposure (9 and 12 weeks), the level of taurine significantly decreased after treatment of 0.5 mg/L dioxane, while exposure to 500 mg/L dioxane significantly increased glutathione levels in urine and decreased arginine metabolism. Furthermore, integrated omics analysis showed that 500 mg/L dioxane exposure induced arginine deficiency by perturbing several genes involved in renal arginine metabolism. Shortage of arginine coupled with increased oxidative stress could lead to renal dysfunction. These findings offer novel insights into the toxicity of dioxane.


Assuntos
Dioxanos/toxicidade , Rim/lesões , Redes e Vias Metabólicas , Animais , Arginina/deficiência , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/urina , Masculino , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Camundongos , Solventes/toxicidade , Urina/química
9.
Sci Rep ; 8(1): 8076, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795412

RESUMO

Although amino acids are known regulators of translation, the unique contributions of specific amino acids are not well understood. We compared effects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profiling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no significant effect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a significant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but effects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profiling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full understanding of how mRNA translation is regulated and point to a unique regulatory role of methionine status on translation initiation that is not dependent upon eIF2 phosphorylation.


Assuntos
Aminoácidos/deficiência , Aminoácidos/farmacologia , Leucina/deficiência , Metionina/deficiência , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular , Meios de Cultura/química , Meios de Cultura/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HEK293 , Humanos , Leucina/farmacologia , Metionina/farmacologia , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa