Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
J Immunol ; 212(2): 188-198, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38166251

RESUMO

The use of a patient's own immune or tumor cells, manipulated ex vivo, enables Ag- or patient-specific immunotherapy. Despite some clinical successes, there remain significant barriers to efficacy, broad patient population applicability, and safety. Immunotherapies that target specific tumor Ags, such as chimeric Ag receptor T cells and some dendritic cell vaccines, can mount robust immune responses against immunodominant Ags, but evolving tumor heterogeneity and antigenic downregulation can drive resistance. In contrast, whole tumor cell vaccines and tumor lysate-loaded dendritic cell vaccines target the patient's unique tumor antigenic repertoire without prior neoantigen selection; however, efficacy can be weak when lower-affinity clones dominate the T cell pool. Chimeric Ag receptor T cell and tumor-infiltrating lymphocyte therapies additionally face challenges related to genetic modification, T cell exhaustion, and immunotoxicity. In this review, we highlight some engineering approaches and opportunities to these challenges among four classes of autologous cell therapies.


Assuntos
Vacinas Anticâncer , Neoplasias , Vacinas , Humanos , Neoplasias/terapia , Antígenos de Neoplasias , Linfócitos T , Imunoterapia , Células Dendríticas , Imunoterapia Adotiva
2.
J Immunol ; 211(5): 782-790, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486193

RESUMO

Lymphatic endothelial cells (LECs) express MHC class II (MHC-II) upon IFN-γ stimulation, yet recent evidence suggests that LECs cannot activate naive or memory CD4+ T cells. In this article, we show that IFN-γ-activated human dermal LECs can robustly reactivate allogeneic human memory CD4+ T cells (hCD4+ TMs), but only when TGF-ß signaling is inhibited. We found that in addition to upregulating MHC-II, IFN-γ also induces LECs to upregulate glycoprotein A repetitions predominant, which anchors latent TGF-ß to the membrane and potentially inhibits T cell activation. Indeed, hCD4+ TM proliferation was substantially increased when LEC-CD4+ TM cultures were treated with a TGF-ß receptor type 1 inhibitor or when glycoprotein A repetitions predominant expression was silenced in LECs. Reactivated hCD4+ TMs were characterized by their proliferation, CD25 expression, and cytokine secretion. CD4+ TM reactivation was dependent on LEC expression of MHC-II, confirming direct TCR engagement. Although CD80 and CD86 were not detected on LECs, the costimulatory molecules OX40L and ICOSL were upregulated upon cytokine stimulation; however, blocking these did not affect CD4+ TM reactivation by LECs. Finally, we found that human dermal LECs also supported the maintenance of Foxp3-expressing hCD4+ TMs independently of IFN-γ-induced MHC-II. Together, these results demonstrate a role for LECs in directly modulating CD4+ TM reactivation under inflammatory conditions and point to LEC-expressed TGF-ß as a negative regulator of this activation.


Assuntos
Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II , Humanos , Antígenos de Histocompatibilidade Classe II/metabolismo , Células Endoteliais , Antígenos CD4 , Citocinas , Moléculas de Adesão Celular , Interferon gama , Fator de Crescimento Transformador beta
3.
Nat Mater ; 18(2): 175-185, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643235

RESUMO

Fully effective vaccines for complex infections must elicit a diverse repertoire of antibodies (humoral immunity) and CD8+ T-cell responses (cellular immunity). Here, we present a synthetic glyco-adjuvant named p(Man-TLR7), which, when conjugated to antigens, elicits robust humoral and cellular immunity. p(Man-TLR7) is a random copolymer composed of monomers that either target dendritic cells (DCs) via mannose-binding receptors or activate DCs via Toll-like receptor 7 (TLR7). Protein antigens are conjugated to p(Man-TLR7) via a self-immolative linkage that releases chemically unmodified antigen after endocytosis, thus amplifying antigen presentation to T cells. Studies with ovalbumin (OVA)-p(Man-TLR7) conjugates demonstrate that OVA-p(Man-TLR7) generates greater humoral and cellular immunity than OVA conjugated to polymers lacking either mannose targeting or TLR7 ligand. We show significant enhancement of Plasmodium falciparum-derived circumsporozoite protein (CSP)-specific T-cell responses, expansion in the breadth of the αCSP IgG response and increased inhibition of sporozoite invasion into hepatocytes with CSP-p(Man-TLR7) when compared with CSP formulated with MPLA/QS-21-loaded liposomes-the adjuvant used in the most clinically advanced malaria vaccine. We conclude that our antigen-p(Man-TLR7) platform offers a strategy to enhance the immunogenicity of protein subunit vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Protozoários/química , Glicoconjugados/química , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Polímeros/química , Adjuvantes Imunológicos/química , Animais , Camundongos , Plasmodium falciparum/imunologia , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia
4.
Physiol Rev ; 92(3): 1005-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22811424

RESUMO

The interstitium describes the fluid, proteins, solutes, and the extracellular matrix (ECM) that comprise the cellular microenvironment in tissues. Its alterations are fundamental to changes in cell function in inflammation, pathogenesis, and cancer. Interstitial fluid (IF) is created by transcapillary filtration and cleared by lymphatic vessels. Herein we discuss the biophysical, biomechanical, and functional implications of IF in normal and pathological tissue states from both fluid balance and cell function perspectives. We also discuss analysis methods to access IF, which enables quantification of the cellular microenvironment; such methods have demonstrated, for example, that there can be dramatic gradients from tissue to plasma during inflammation and that tumor IF is hypoxic and acidic compared with subcutaneous IF and plasma. Accumulated recent data show that IF and its convection through the interstitium and delivery to the lymph nodes have many and diverse biological effects, including in ECM reorganization, cell migration, and capillary morphogenesis as well as in immunity and peripheral tolerance. This review integrates the biophysical, biomechanical, and biological aspects of interstitial and lymph fluid and its transport in tissue physiology, pathophysiology, and immune regulation.


Assuntos
Líquido Extracelular/metabolismo , Inflamação/metabolismo , Linfa/metabolismo , Sistema Linfático/metabolismo , Neoplasias/metabolismo , Animais , Fenômenos Biomecânicos , Matriz Extracelular/metabolismo , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Sistema Linfático/patologia , Sistema Linfático/fisiopatologia , Neoplasias/patologia , Neoplasias/fisiopatologia , Microambiente Tumoral , Equilíbrio Hidroeletrolítico
5.
Circ Res ; 120(9): 1440-1452, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28130294

RESUMO

RATIONALE: The transport of interstitial fluid and solutes into lymphatic vessels is important for maintaining interstitial homeostasis and delivering antigens and soluble factors to the lymph node for immune surveillance. Transendothelial transport across lymphatic endothelial cells (LECs) is commonly considered to occur paracellularly, or between cell-cell junctions, and driven by local pressure and concentration gradients. However, emerging evidence suggests that LECs also play active roles in regulating interstitial solute balance and can scavenge and store antigens, raising the possibility that vesicular or transcellular pathways may be important in lymphatic solute transport. OBJECTIVE: The aim of this study was to determine the relative importance of transcellular (vesicular) versus paracellular transport pathways by LECs and how mechanical stress (ie, fluid flow conditioning) alters either pathway. METHODS AND RESULTS: We demonstrate that transcellular transport mechanisms substantially contribute to lymphatic solute transport and that solute uptake occurs in both caveolae- and clathrin-coated vesicles. In vivo, intracelluar uptake of fluorescently labeled albumin after intradermal injection by LECs was similar to that of dermal dendritic cells. In vitro, we developed a method to differentially quantify intracellular solute uptake versus transendothelial transport by LECs. LECs preconditioned to 1 µm/s transmural flow demonstrated increased uptake and basal-to-apical solute transport, which could be substantially reversed by blocking dynamin-dependent vesicle formation. CONCLUSIONS: These findings reveal the importance of intracellular transport in steady-state lymph formation and suggest that LECs use transcellular mechanisms in parallel to the well-described paracellular route to modulate solute transport from the interstitium according to biomechanical cues.


Assuntos
Células Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Líquido Extracelular/metabolismo , Deslocamentos de Líquidos Corporais , Soroalbumina Bovina/metabolismo , Albumina Sérica/metabolismo , Pele/metabolismo , Transcitose , Animais , Cavéolas/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Células Endoteliais/ultraestrutura , Endotélio Linfático/ultraestrutura , Feminino , Humanos , Injeções Intradérmicas , Masculino , Camundongos Endogâmicos BALB C , Permeabilidade , Albumina Sérica/administração & dosagem , Soroalbumina Bovina/administração & dosagem , Albumina Sérica Humana , Pele/ultraestrutura , Estresse Mecânico , Fatores de Tempo
6.
Eur J Vasc Endovasc Surg ; 57(6): 859-867, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29804748

RESUMO

OBJECTIVE: Despite recent advances in pharmacological research and microsurgery, lymphoedema remains an incurable disease that deeply affects quality of life. There is an urgent need for innovative approaches to restore continuous lymph flow in affected tissues. To this end, the efficacy of a subcutaneously implanted draining device in reducing lymphoedema volume in a rat hindlimb lymphoedema model was tested. METHODS: A rat model of chronic lymphoedema was developed by surgical removal of popliteal and inguinal lymph nodes, followed by irradiation. The model was characterised by monitoring limb volume via tape measure, skin water content via dielectric constant measurement, and lymphatic drainage via lymphofluoroscopy. After lymphoedema establishment in 16 Wistar rats, a device made of fenestrated tubing equipped with a miniaturised pumping system, was implanted subcutaneously in the affected limb to restore continuous recirculation of interstitial fluid. RESULTS: Lymphofluoroscopy imaging showed impaired lymphatic drainage following lymphadenectomy and irradiation. Affected limb volume and skin water content increased significantly compared with the untreated limb, with a median (interquartile range) of 3.85 (0.38) cm3 versus 3.03 (0.43) cm3 for volume (n = 16, p = .001) and 26.6 (9.1) versus 16.6 (3.7) cm3 for skin dielectric constant (n = 16, p = .001). Treatment of lymphoedema with the implanted drainage device showed that 5 weeks post-implant excess volume was significantly reduced by 51 ± 18% compared with the pre-implant situation (n = 9 sham group, n = 7 pump group). CONCLUSION: Lymphoedema volume in the rat model was significantly reduced by restoring continuous drainage of excess fluid using a novel subcutaneously implanted device, opening the way to the development of an artificial lymphatic vessel.


Assuntos
Drenagem/instrumentação , Bombas de Infusão Implantáveis , Sistema Linfático/fisiopatologia , Linfedema/terapia , Animais , Modelos Animais de Doenças , Desenho de Equipamento , Estudos de Viabilidade , Feminino , Membro Posterior , Excisão de Linfonodo , Sistema Linfático/diagnóstico por imagem , Linfedema/diagnóstico por imagem , Linfedema/etiologia , Linfedema/fisiopatologia , Linfografia , Miniaturização , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo , Raios X
7.
Am J Respir Cell Mol Biol ; 59(6): 723-732, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30095976

RESUMO

Pulmonary lymphangioleiomyomatosis (LAM) is a slow-progressing metastatic disease that is driven by mutations in the tumor suppressor tuberous sclerosis complex 1/2 (TSC1/2). Rapamycin inhibits LAM cell proliferation and is the only approved treatment, but it cannot cause the regression of existing lesions and can only stabilize the disease. However, in other cancers, immunotherapies such as checkpoint blockade against PD-1 and its ligand PD-L1 have shown promise in causing tumor regression and even curing some patients. Thus, we asked whether PD-L1 has a role in LAM progression. In vitro, PD-L1 expression in murine Tsc2-null cells is unaffected by mTOR inhibition with torin but can be upregulated by IFN-γ. Using immunohistochemistry and single-cell flow cytometry, we found increased PD-L1 expression both in human lung tissue from patients with LAM and in Tsc2-null lesions in a murine model of LAM. In this model, PD-L1 is highly expressed in the lung by antigen-presenting and stromal cells, and activated T cells expressing PD-1 infiltrate the affected lung. In vivo treatment with anti-PD-1 antibody significantly prolongs mouse survival in the model of LAM. Together, these data demonstrate that PD-1/PD-L1-mediated immunosuppression may occur in LAM, and suggest new opportunities for therapeutic targeting that may provide benefits beyond those of rapamycin.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/metabolismo , Esclerose Tuberosa/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/imunologia , Estudos de Casos e Controles , Proliferação de Células , Modelos Animais de Doenças , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/imunologia , Linfangioleiomiomatose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/imunologia , Esclerose Tuberosa/patologia , Regulação para Cima
8.
Proc Natl Acad Sci U S A ; 112(47): 14467-72, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26598681

RESUMO

Immunotherapy has great potential to treat cancer and prevent future relapse by activating the immune system to recognize and kill cancer cells. A variety of strategies are continuing to evolve in the laboratory and in the clinic, including therapeutic noncellular (vector-based or subunit) cancer vaccines, dendritic cell vaccines, engineered T cells, and immune checkpoint blockade. Despite their promise, much more research is needed to understand how and why certain cancers fail to respond to immunotherapy and to predict which therapeutic strategies, or combinations thereof, are most appropriate for each patient. Underlying these challenges are technological needs, including methods to rapidly and thoroughly characterize the immune microenvironment of tumors, predictive tools to screen potential therapies in patient-specific ways, and sensitive, information-rich assays that allow patient monitoring of immune responses, tumor regression, and tumor dissemination during and after therapy. The newly emerging field of immunoengineering is addressing some of these challenges, and there is ample opportunity for engineers to contribute their approaches and tools to further facilitate the clinical translation of immunotherapy. Here we highlight recent technological advances in the diagnosis, therapy, and monitoring of cancer in the context of immunotherapy, as well as ongoing challenges.


Assuntos
Imunoterapia , Neoplasias/terapia , Antígenos de Neoplasias/imunologia , Bioengenharia , Antígeno CTLA-4/antagonistas & inibidores , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Humanos , Neoplasias/diagnóstico , Células Neoplásicas Circulantes , Linfócitos T/imunologia
9.
J Allergy Clin Immunol ; 140(5): 1339-1350, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28343701

RESUMO

BACKGROUND: Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. OBJECTIVE: Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. METHODS: Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist-encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow-derived DCs enabled benchmarking of the TLR8 agonist-encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25-loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. RESULTS: Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist-adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. CONCLUSION: TLR8 agonist-encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacina BCG/imunologia , Células Dendríticas/imunologia , Imidazóis/administração & dosagem , Monócitos/imunologia , Nanopartículas/administração & dosagem , Quinolinas/administração & dosagem , Imunidade Adaptativa , Animais , Animais Recém-Nascidos , Biomimética , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Imidazóis/química , Imidazóis/farmacologia , Imunidade Inata , Imunomodulação , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Nanopartículas/química , Polímeros/química , Quinolinas/química , Quinolinas/farmacologia , Receptor 8 Toll-Like/agonistas , Vacinação
10.
Arterioscler Thromb Vasc Biol ; 36(11): 2203-2212, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634833

RESUMO

OBJECTIVE: Perivascular cells, including pericytes, macrophages, smooth muscle cells, and other specialized cell types, like podocytes, participate in various aspects of vascular function. However, aside from the well-established roles of smooth muscle cells and pericytes, the contributions of other vascular-associated cells are poorly understood. Our goal was to ascertain the function of perivascular macrophages in adult tissues under nonpathological conditions. APPROACH AND RESULTS: We combined confocal microscopy, in vivo cell depletion, and in vitro assays to investigate the contribution of perivascular macrophages to vascular function. We found that resident perivascular macrophages are associated with capillaries at a frequency similar to that of pericytes. Macrophage depletion using either clodronate liposomes or antibodies unexpectedly resulted in hyperpermeability. This effect could be rescued when M2-like macrophages, but not M1-like macrophages or dendritic cells, were reconstituted in vivo, suggesting subtype-specific roles for macrophages in the regulation of vascular permeability. Furthermore, we found that permeability-promoting agents elicit motility and eventual dissociation of macrophages from the vasculature. Finally, in vitro assays showed that M2-like macrophages attenuate the phosphorylation of VE-cadherin upon exposure to permeability-promoting agents. CONCLUSIONS: This study points to a direct contribution of macrophages to vessel barrier integrity and provides evidence that heterotypic cell interactions with the endothelium, in addition to those of pericytes, control vascular permeability.


Assuntos
Capilares/metabolismo , Permeabilidade Capilar , Comunicação Celular , Células Endoteliais/metabolismo , Macrófagos Peritoneais/metabolismo , Mesentério/irrigação sanguínea , Peritônio/irrigação sanguínea , Pele/irrigação sanguínea , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Ovalbumina/metabolismo , Fenótipo , Fosforilação , Rodaminas/metabolismo , Fatores de Tempo , Transfecção
11.
J Immunol ; 194(11): 5200-10, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25917096

RESUMO

Collecting lymphatic vessels (CLVs), surrounded by fat and endowed with contractile muscle and valves, transport lymph from tissues after it is absorbed into lymphatic capillaries. CLVs are not known to participate in immune responses. In this study, we observed that the inherent permeability of CLVs allowed broad distribution of lymph components within surrounding fat for uptake by adjacent macrophages and dendritic cells (DCs) that actively interacted with CLVs. Endocytosis of lymph-derived Ags by these cells supported recall T cell responses in the fat and also generated Ag-bearing DCs for emigration into adjacent lymph nodes (LNs). Enhanced recruitment of DCs to inflammation-reactive LNs significantly relied on adipose tissue DCs to maintain sufficient numbers of Ag-bearing DCs as the LN expanded. Thus, CLVs coordinate inflammation and immunity within adipose depots and foster the generation of an unexpected pool of APCs for Ag transport into the adjacent LN.


Assuntos
Tecido Adiposo/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Linfonodos/imunologia , Vasos Linfáticos/metabolismo , Tecido Adiposo/patologia , Animais , Movimento Celular/imunologia , Células Dendríticas/metabolismo , Endocitose , Humanos , Inflamação/imunologia , Linfonodos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Ratos , Ratos Sprague-Dawley , Linfócitos T/imunologia , Junções Íntimas/imunologia
12.
J Immunol ; 192(11): 5002-11, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24795456

RESUMO

Until recently, the known roles of lymphatic endothelial cells (LECs) in immune modulation were limited to directing immune cell trafficking and passively transporting peripheral Ags to lymph nodes. Recent studies demonstrated that LECs can directly suppress dendritic cell maturation and present peripheral tissue and tumor Ags for autoreactive T cell deletion. We asked whether LECs play a constitutive role in T cell deletion under homeostatic conditions. In this study, we demonstrate that murine LECs under noninflamed conditions actively scavenge and cross-present foreign exogenous Ags to cognate CD8(+) T cells. This cross-presentation was sensitive to inhibitors of lysosomal acidification and endoplasmic reticulum-golgi transport and was TAP1 dependent. Furthermore, LECs upregulated MHC class I and the PD-1 ligand PD-L1, but not the costimulatory molecules CD40, CD80, or CD86, upon Ag-specific interactions with CD8(+) T cells. Finally, Ag-specific CD8(+) T cells that were activated by LECs underwent proliferation, with early-generation apoptosis and dysfunctionally activated phenotypes that could not be reversed by exogenous IL-2. These findings help to establish LECs as APCs that are capable of scavenging and cross-presenting exogenous Ags, in turn causing dysfunctional activation of CD8(+) T cells under homeostatic conditions. Thus, we suggest that steady-state lymphatic drainage may contribute to peripheral tolerance by delivering self-Ags to lymph node-resident leukocytes, as well as by providing constant exposure of draining peripheral Ags to LECs, which maintain tolerogenic cross-presentation of such Ags.


Assuntos
Apresentação de Antígeno/fisiologia , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Endoteliais/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Células Apresentadoras de Antígenos/citologia , Antígenos/genética , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Transformada , Reações Cruzadas/imunologia , Células Endoteliais/citologia , Antígenos de Histocompatibilidade Classe I/genética , Interleucina-2/genética , Interleucina-2/imunologia , Camundongos , Camundongos Knockout
13.
Proc Natl Acad Sci U S A ; 110(49): 19902-7, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248387

RESUMO

In subunit vaccines, strong CD8(+) T-cell responses are desired, yet they are elusive at reasonable adjuvant doses. We show that targeting adjuvant to the lymph node (LN) via ultrasmall polymeric nanoparticles (NPs), which rapidly drain to the LN after intradermal injection, greatly enhances adjuvant efficacy at low doses. Coupling CpG-B or CpG-C oligonucleotides to NPs led to better dual-targeting of adjuvant and antigen (codelivered on separate NPs) in cross-presenting dendritic cells compared with free adjuvant. This led to enhanced dendritic cell maturation and T helper 1 (Th1)-cytokine secretion, in turn driving stronger effector CD8(+) T-cell activation with enhanced cytolytic profiles and, importantly, more powerful memory recall. With only 4 µg CpG, NP-CpG-B could substantially protect mice from syngeneic tumor challenge, even after 4 mo of vaccination, compared with free CpG-B. Together, these results show that nanocarriers can enhance vaccine efficacy at a low adjuvant dose for inducing potent and long-lived cellular immunity.


Assuntos
Adjuvantes Imunológicos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular/imunologia , Memória Imunológica/imunologia , Nanopartículas/metabolismo , Neoplasias/prevenção & controle , Oligodesoxirribonucleotídeos/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Injeções Intradérmicas , Linfonodos/citologia , Camundongos , Nanopartículas/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Vacinas de Subunidades Antigênicas/imunologia
14.
Nat Rev Immunol ; 5(8): 617-28, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16056255

RESUMO

Antigen-presenting dendritic cells often acquire foreign antigens in peripheral tissues such as the skin. Optimal encounter with naive T cells for the presentation of these antigens requires that the dendritic cells migrate to draining lymph nodes through lymphatic vessels. In this article, we review important aspects of what is known about dendritic-cell trafficking into and through lymphatic vessels to lymph nodes. We present these findings in the context of information about lymphatic-vessel biology. Gaining a better understanding of the crosstalk between dendritic cells and lymphatic vessels during the migration of dendritic cells to lymph nodes is essential for future advances in manipulating dendritic-cell migration as a means to fine-tune immune responses in clinical settings.


Assuntos
Quimiotaxia , Células Dendríticas/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Animais , Quimiocinas/imunologia , Quimiocinas/metabolismo , Quimiotaxia/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Linfonodos/citologia , Vasos Linfáticos/citologia
15.
Cancer Immunol Immunother ; 64(8): 1033-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25982370

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6c(hi) Ly6g(-) monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2 days post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6c(lo) Ly6g(+) granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1(int) Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6c(hi) macrophages, for up to 7 days following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10 melanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8(+) T cells in melanoma cells expressing OVA. These findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/transplante , Imunoterapia Adotiva/métodos , Melanoma Experimental/terapia , Células Mieloides/fisiologia , Tioguanina/administração & dosagem , Timoma/terapia , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunização , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Micelas , Polímeros , Timoma/imunologia , Microambiente Tumoral/efeitos dos fármacos
16.
J Immunol ; 190(9): 4608-20, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23530147

RESUMO

To address the requirement for lymphatic capillaries in dendritic cell (DC) mobilization from skin to lymph nodes (LNs), we used mice bearing one inactivated allele of vascular endothelial growth factor receptor 3 (VEGFR3) where skin lymphatic capillaries are reported absent. Unexpectedly, DC mobilization from the back skin to draining LNs was similar in magnitude, and kinetics to control mice and humoral immunity appeared intact. By contrast, DC migration from body extremities, including ear and forepaws, was ablated. An evaluation in different regions of skin revealed rare patches of lymphatic capillaries only in body trunk areas where migration was intact. That is, whereas the ear skin was totally devoid of lymphatic capillaries, residual capillaries in the back skin were present though retained only at ∼10% normal density. This reduction in density markedly reduced the clearance of soluble tracers, indicating that normal cell migration was spared under conditions when lymphatic transport function was poor. Residual lymphatic capillaries expressed slightly higher levels of CCL21 and migration of skin DCs to LNs remained dependent on CCR7 in Chy mice. DC migration from the ear could be rescued by the introduction of a limited number of lymphatic capillaries through skin transplantation. Thus, the development of lymphatic capillaries in the skin of body extremities was more severely impacted by a mutant copy of VEGFR3 than trunk skin, but lymphatic transport function was markedly reduced throughout the skin, demonstrating that even under conditions when a marked loss in lymphatic capillary density reduces lymph transport, DC migration from skin to LNs remains normal.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Derme/imunologia , Linfonodos/imunologia , Animais , Quimiocina CCL21/imunologia , Quimiocina CCL21/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Derme/metabolismo , Derme/transplante , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Linfa/imunologia , Linfa/metabolismo , Linfonodos/metabolismo , Linfonodos/patologia , Linfangiogênese/imunologia , Vasos Linfáticos/imunologia , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Transplante de Pele/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Cancer Cell ; 11(6): 526-38, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17560334

RESUMO

CCR7 is implicated in lymph node metastasis of cancer, but its role is obscure. We report a mechanism explaining how interstitial flow caused by lymphatic drainage directs tumor cell migration by autocrine CCR7 signaling. Under static conditions, lymphatic endothelium induced CCR7-dependent chemotaxis of tumor cells through 3D matrices. However, interstitial flow induced strong increases in tumor cell migration that were also CCR7 dependent, but lymphatic independent. This autologous chemotaxis correlated with metastatic potential in four cell lines and was verified by visualizing directional polarization of cells in the flow direction. Computational modeling revealed that transcellular gradients of CCR7 ligand were created under flow to drive this response. This illustrates how tumor cells may be guided to lymphatics during metastasis.


Assuntos
Comunicação Autócrina , Quimiotaxia , Sistema Linfático/citologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Quimiocinas/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/fisiologia , Humanos , Metástase Linfática , Sistema Linfático/fisiologia , Modelos Biológicos , Receptores CCR7
18.
Nature ; 462(7272): 449-60, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19940915

RESUMO

The engineering of materials that can modulate the immune system is an emerging field that is developing alongside immunology. For therapeutic ends such as vaccine development, materials are now being engineered to deliver antigens through specific intracellular pathways, allowing better control of the way in which antigens are presented to one of the key types of immune cell, T cells. Materials are also being designed as adjuvants, to mimic specific 'danger' signals in order to manipulate the resultant cytokine environment, which influences how antigens are interpreted by T cells. In addition to offering the potential for medical advances, immunomodulatory materials can form well-defined model systems, helping to provide new insight into basic immunobiology.


Assuntos
Materiais Biocompatíveis/farmacologia , Bioengenharia/métodos , Fatores Imunológicos/imunologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Bioengenharia/tendências , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Fatores Imunológicos/uso terapêutico
19.
Angiogenesis ; 17(2): 347-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23892627

RESUMO

Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.


Assuntos
Derme/fisiologia , Vasos Linfáticos/fisiologia , Fotoquimioterapia , Regeneração , Técnicas de Ablação , Animais , Morte Celular/efeitos dos fármacos , Derme/efeitos dos fármacos , Derme/efeitos da radiação , Relação Dose-Resposta a Droga , Orelha/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Cinética , Luz , Vasos Linfáticos/efeitos dos fármacos , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação
20.
Nat Mater ; 12(11): 978-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24150416

RESUMO

Vaccines aim to protect against or treat diseases through manipulation of the immune response, promoting either immunity or tolerance. In the former case, vaccines generate antibodies and T cells poised to protect against future pathogen encounter or attack diseased cells such as tumours; in the latter case, which is far less developed, vaccines block pathogenic autoreactive T cells and autoantibodies that target self tissue. Enormous challenges remain, however, as a consequence of our incomplete understanding of human immunity. A rapidly growing field of research is the design of vaccines based on synthetic materials to target organs, tissues, cells or intracellular compartments; to co-deliver immunomodulatory signals that control the quality of the immune response; or to act directly as immune regulators. There exists great potential for well-defined materials to further our understanding of immunity. Here we describe recent advances in the design of synthetic materials to direct immune responses, highlighting successes and challenges in prophylactic, therapeutic and tolerance-inducing vaccines.


Assuntos
Engenharia , Imunidade/imunologia , Vacinas Sintéticas/imunologia , Animais , Portadores de Fármacos/química , Humanos , Vacinas Sintéticas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa