Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(2): e1009359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556113

RESUMO

Vesicular trafficking defects, particularly those in the autophagolysosomal system, have been strongly implicated in the pathogenesis of Parkinson's disease and related α-synucleinopathies. However, mechanisms mediating dysfunction of membrane trafficking remain incompletely understood. Using a Drosophila model of α-synuclein neurotoxicity with widespread and robust pathology, we find that human α-synuclein expression impairs autophagic flux in aging adult neurons. Genetic destabilization of the actin cytoskeleton rescues F-actin accumulation, promotes autophagosome clearance, normalizes the autophagolysosomal system, and rescues neurotoxicity in α-synuclein transgenic animals through an Arp2/3 dependent mechanism. Similarly, mitophagosomes accumulate in human α-synuclein-expressing neurons, and reversal of excessive actin stabilization promotes both clearance of these abnormal mitochondria-containing organelles and rescue of mitochondrial dysfunction. These results suggest that Arp2/3 dependent actin cytoskeleton stabilization mediates autophagic and mitophagic dysfunction and implicate failure of autophagosome maturation as a pathological mechanism in Parkinson's disease and related α-synucleinopathies.


Assuntos
Actinas/metabolismo , Autofagossomos/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , alfa-Sinucleína/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Envelhecimento , Animais , Animais Geneticamente Modificados , Autofagossomos/genética , Autofagia/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética
2.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769111

RESUMO

Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growth-promoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.


Assuntos
Acetatos/farmacologia , Ciclopropanos/farmacologia , Antagonistas de Leucotrienos/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Sulfetos/farmacologia , Animais , Animais Recém-Nascidos , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos , Feminino , Masculino , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/genética , Ratos
3.
Cereb Cortex ; 23(12): 2905-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22989581

RESUMO

CNS reparative-medicine therapeutic strategies need answers on the putative recapitulation of the basic rules leading to mammalian CNS development. To achieve this aim, we focus on the regeneration of functional connections in the mesocorticolimbic dopaminergic system. We used organotypic slice cocultures of ventral tegmental area/substantia nigra (VTA/SN) and prefrontal cortex (PFC) on a multielectrode array (MEA) platform to record spikes and local field potentials. The spontaneously growing synaptically based bidirectional bursting activity was followed from 2 to 28 days in vitro (DIV). A statistical analysis of excitatory and inhibitory neurons properties of the physiological firing activity demonstrated a remarkable, exponentially increasing maturation with a time constant of about 5-7 DIV. Immunohistochemistry demonstrated that the ratio of excitatory/inhibitory neurons (3:1) was in line with the functional results obtained. Exemplary pharmacology suggested that GABAA receptors were able to exert phasic and tonic inhibition typical of an adulthood network. Moreover, dopamine D2 receptor inactivation was equally inhibitory both on the spontaneous neuronal activity recorded by MEA and on patch-clamp electrophysiology in PFC pyramidal neurons. These results demonstrate that axon growth cones reach synaptic targets up to full functionality and that organotypic cocultures of the VTA/SN-PFC perfectly model their newly born dopaminergic, glutamatergic and GABAergic neuronal circuitries.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Regeneração , Substância Negra/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Neurônios Dopaminérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Camundongos
4.
Neuropharmacology ; 104: 255-71, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26498067

RESUMO

The mammalian nervous system is a complex, functional network of neurons, consisting of local and long-range connections. Neuronal growth is highly coordinated by a variety of extracellular and intracellular signaling molecules. Purines turned out to be an essential component of these processes. Here, we review the current knowledge about the involvement of purinergic signaling in the regulation of neuronal development. We particularly focus on its role in neuritogenesis: the formation and extension of neurites. In the course of maturation mammals generally lose their ability to regenerate the central nervous system (CNS) e.g. after traumatic brain injury; although, spontaneous regeneration still occurs in the peripheral nervous system (PNS). Thus, it is crucial to translate the knowledge about CNS development and PNS regeneration into novel approaches to enable neurons of the mature CNS to regenerate. In this context we give a general overview of growth-inhibitory and growth-stimulatory factors and mechanisms involved in neurite growth. With regard to neuronal growth, astrocytes are an important cell population. They provide structural and metabolic support to neurons and actively participate in brain signaling. Astrocytes respond to injury with beneficial or detrimental reactions with regard to axonal growth. In this review we present the current knowledge of purines in these glial functions. Moreover, we discuss organotypic brain slice co-cultures as a model which retains neuron-glia interactions, and further presents at once a model for CNS development and regeneration. In summary, the purinergic system is a pivotal factor in neuronal development and in the response to injury. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Assuntos
Astrócitos/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Regeneração Nervosa , Neuritos/fisiologia , Sistema Nervoso Periférico/crescimento & desenvolvimento , Purinas/metabolismo , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Sistema Nervoso Central/metabolismo , Gliose/metabolismo , Humanos , Neuritos/metabolismo , Sistema Nervoso Periférico/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2X/fisiologia , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y/fisiologia
5.
Neuropharmacology ; 93: 252-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25683778

RESUMO

Extracellular purines have multiple functional roles in development, plastic remodelling, and regeneration of the CNS by stimulating certain P2X/Y receptor (R) subtypes. In the present study we elucidated the involvement of P2YRs in neuronal fibre outgrowth in the developing nervous system. We particularly focused on the P2Y1R subtype and the dopaminergic system, respectively. For this purpose, we used organotypic slice co-cultures consisting of the ventral tegmental area/substantia nigra (VTA/SN) and the prefrontal cortex (PFC). After detecting the presence of the P2Y1R in VTA/SN, PFC, and on outgrowing fibres in the border region (e.g. on glial processes) connecting both brain slices, we could show that pharmacological modulation of the receptor influenced neuronal fibre outgrowth. Biocytin-tracing and tyrosine hydroxylase-immunolabelling together with quantitative image analysis revealed a significant increase in fibre growth in the border region of the co-cultures after treatment with ADPßS (P2Y1,12,13R agonist). The observed stimulatory potential of ADPßS was inhibited by pre-treatment with the P2X/YR antagonist PPADS. In P2Y1R knockout (P2Y1R(-/-)) mice, the ADPßS-induced stimulatory effect was absent, while growth was significantly enhanced in the co-cultures of the respective wild-type. This observation was confirmed in entorhino-hippocampal co-cultures, an example of a different projection system, expressing the P2Y1R. Using wortmannin and PD98059 we further showed that PI3K/Akt and MAPK/ERK cascades are involved in the mechanism underlying ADPßS-induced fibre growth. In conclusion, the data of this study clearly indicate that activation of the P2Y1R stimulates fibre growth and thereby emphasises the general role of this particular receptor subtype during development and regeneration.


Assuntos
Fibras Nervosas/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Receptores Purinérgicos P2Y1/metabolismo , Área Tegmentar Ventral/citologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/fisiologia , Técnicas de Cocultura , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Fibras Nervosas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Agonistas do Receptor Purinérgico P2Y/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Receptores Purinérgicos P2Y1/genética , Substância Negra/citologia , Tionucleotídeos/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Int J Dev Neurosci ; 40: 1-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447789

RESUMO

Calcium ions (Ca(2+)) play important roles in neuroplasticity and the regeneration of nerves. Intracellular Ca(2+) concentrations are regulated by Ca(2+) channels, among them L-type voltage-gated Ca(2+) channels, which are inhibited by dihydropyridines like nimodipine. The purpose of this study was to investigate the effect of nimodipine on neurite growth during development and regeneration. As an appropriate model to study neurite growth, we chose organotypic brain slice co-cultures of the mesocortical dopaminergic projection system, consisting of the ventral tegmental area/substantia nigra and the prefrontal cortex from neonatal rat brains. Quantification of the density of the newly built neurites in the border region (region between the two cultivated slices) of the co-cultures revealed a growth promoting effect of nimodipine at concentrations of 0.1µM and 1µM that was even more pronounced than the effect of the growth factor NGF. This beneficial effect was absent when 10µM nimodipine were applied. Toxicological tests revealed that the application of nimodipine at this higher concentration slightly induced caspase 3 activation in the cortical part of the co-cultures, but did neither affect the amount of lactate dehydrogenase release or propidium iodide uptake nor the ratio of bax/bcl-2. Furthermore, the expression levels of different genes were quantified after nimodipine treatment. The expression of Ca(2+) binding proteins, immediate early genes, glial fibrillary acidic protein, and myelin components did not change significantly after treatment, indicating that the regulation of their expression is not primarily involved in the observed nimodipine mediated neurite growth. In summary, this study revealed for the first time a neurite growth promoting effect of nimodipine in the mesocortical dopaminergic projection system that is highly dependent on the applied concentrations.


Assuntos
Encéfalo/citologia , Bloqueadores dos Canais de Cálcio/farmacologia , Dopamina/metabolismo , Neuritos/efeitos dos fármacos , Neurônios/citologia , Nimodipina/farmacologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Proteínas Imediatamente Precoces/metabolismo , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
7.
Stem Cells Dev ; 24(7): 824-35, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25390472

RESUMO

Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.


Assuntos
Encéfalo/citologia , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Fibras Nervosas/efeitos dos fármacos , Regeneração Nervosa , Animais , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Nestina/genética , Nestina/metabolismo
8.
Prog Histochem Cytochem ; 46(3): 131-84, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21962837

RESUMO

KIT is a type III receptor protein tyrosine kinase, and KITL its cognate ligand. KIT can mediate its effects via several intracellular signalling pathways, or by formation of a cell-cell anchor with its ligand. Through these mechanisms, KIT controls fundamental cellular processes, including migration, proliferation, differentiation and survival. These cellular processes are modulated by soluble KIT, a cleavage product of KIT, generated at the cell membrane. A cell-retained KIT cleavage fragment also arises from this cleavage event. This cleavage fragment must be distinguished from truncated KIT (trKIT), which originates through cryptic promoter usage. The expression of trKIT is highly restricted to postmeiotic germ cells in the testis. In contrast, KIT, together with its cleavage products, is present in somatic cells and germ cells in the gonads of both sexes. A functional KITL/KIT system is mandatory for normal population of the gonads by germ cells. Signalling via the KITL/KIT system promotes the growth, maturation, and survival of germ cells within the gonads, and prevents meiotic entry and progression. In addition to its importance in germ cell biology, the KITL/KIT system is crucial for gonadal stromal differentiation. During foetal life, KIT is expressed by testicular stromal precursor cells, which develop into Leydig cells. In the ovary, stromal cell KIT expression accompanies theca layer development around advanced follicles. After ovulation, KIT-immunopositive cells translocate from the theca layer to the luteal ganulosa where they contribute to a delicate cellular network that extends between the fully luteinised large luteal cells. In the outer regions of the developing corpus luteum, a highly conspicuous subpopulation of KIT/CD14-double-immunopositive cells can be observed. KIT/CD14-double-immunopositive cells are also seen in the haematopoietic-like colonies of long-term granulosa cultures established from late antral follicles. These cultures demonstrate expression of pluripotency marker genes such as octamer binding transcription factor-3/4 and sex determining region Y-box 2. The KIT/CD14-double-immunopositive cells can be purified and enriched by KIT-immunopositive magnetic cell sorting. Subsequent exposure of the KIT-expressing cells to the hanging drop culture method, combined with haematopoietic differentiation medium, provides the signals necessary for their differentiation into endothelial and steroidogenic cells. This suggests that monocyte-derived multipotent cells are involved in ovarian tissue remodelling. In summary, multicelluar KITL/KIT signalling organizes the stroma in the ovary and testis; monocyte-derived multipotent cells may be involved.


Assuntos
Células Germinativas/metabolismo , Ovário/citologia , Ovário/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Testículo/metabolismo , Animais , Diferenciação Celular , Corpo Lúteo/embriologia , Corpo Lúteo/metabolismo , Feminino , Gametogênese , Células Germinativas/citologia , Gônadas/citologia , Gônadas/metabolismo , Humanos , Células Intersticiais do Testículo/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-kit/biossíntese , Transdução de Sinais , Testículo/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa