Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Environ Manage ; 347: 118960, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783075

RESUMO

There are growing concerns about increases in the size, frequency, and destructiveness of wildfire events. One commonly used mitigation strategy is the creation and maintenance of defensible space, a zone around buildings where vegetation is managed to increase potential for structures to survive during wildfires. Despite widespread acceptance and advocacy of defensible space, few studies provide empirical evidence documenting the efficacy of different fuel modification practices under real wildfire conditions. The 2018 Woolsey Fire in Los Angeles County, California, occurred a short time after high-resolution (0.07 m2) land cover data were created, providing a unique opportunity to quantify vegetation before the fire. We integrated measurements from this high-resolution land cover data with parcel data, building attributes, and environmental context. We then used Random Forests models to analyze the extent to which these factors predicted structure loss in the wildfire. Variable importance scores showed vegetation around buildings was not a strong predictor of building-level damage outcomes compared to building materials and landscape features such as paved land cover per parcel, elevation, building density, and distance to road networks. Among building materials, multi-paned windows and enclosed eaves were most highly associated with building survival. These results are consistent with other studies that conclude building materials and environmental context are more related to survivorship than defensible space.


Assuntos
Incêndios , Incêndios Florestais , California
2.
Ecol Appl ; 32(6): e2626, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397185

RESUMO

One consequence of global change causing widespread concern is the possibility of ecosystem conversions from one type to another. A classic example of this is vegetation type conversion (VTC) from native woody shrublands to invasive annual grasslands in the biodiversity hotspot of Southern California. Although the significance of this problem is well recognized, understanding where, how much, and why this change is occurring remains elusive owing to differences in results from studies conducted using different methods, spatial extents, and scales. Disagreement has arisen particularly over the relative importance of short-interval fires in driving these changes. Chronosequence approaches that use space for time to estimate changes have produced different results than studies of changes at a site over time. Here we calculated the percentage woody and herbaceous cover across Southern California using air photos from ~1950 to 2019. We assessed the extent of woody cover change and the relative importance of fire history, topography, soil moisture, and distance to human infrastructure in explaining change across a hierarchy of spatial extents and regions. We found substantial net decline in woody cover and expansion of herbaceous vegetation across all regions, but the most dramatic changes occurred in the northern interior and southern coastal areas. Variables related to frequent, short-interval fire were consistently top ranked as the explanation for shrub to grassland type conversion, but low soil moisture and topographic complexity were also strong correlates. Despite the consistent importance of fire, there was substantial geographical variation in the relative importance of drivers, and these differences resulted in different mapped predictions of VTC. This geographical variation is important to recognize for management decision-making and, in addition to differences in methodological design, may also partly explain differences in previous study results. The overwhelming importance of short-interval fire has management implications. It suggests that actions should be directed away from imposing fires to preventing fires. Prevention can be controlled through management actions that limit ignitions, fire spread, and the damage sustained in areas that do burn. This study also demonstrates significant potential for changing fire regimes to drive large-scale, abrupt ecological change.


Assuntos
Ecossistema , Incêndios , Biodiversidade , California , Geografia , Humanos , Solo
3.
Conserv Biol ; 36(1): e13834, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34476838

RESUMO

From a conservation perspective, quantifying potential refugial capacity has been predominantly focused on climate refugia, which is critical for maintaining the persistence of species and ecosystems. However, protection from other stressors, such as human-induced changes in fire and hydrology, that cause habitat loss, degradation, and fragmentation is also necessary to ensure that conservation efforts focused on climate are not undermined by other threats. Thus, conceptual and methodological advances for quantifying potential refugia from multiple anthropogenic stressors are important to support conservation efforts. We devised a new conceptual approach, the domains of refugia, for assessing refugial capacity that identifies areas where exposure to multiple stressors is low. In our framework, patterns of environmental variability (e.g., increased frequency of warm summers), thresholds of resilience, and extent and intensity of stressors are used to identify areas of potential refugia from a suite of ongoing anthropogenic stressors (e.g., changes in fire regime). To demonstrate its utility, we applied the framework to a Southern California landscape. Sites with high refugial capacity (super-refugia sites) had on average 30% fewer extremely warm summers, 20% fewer fire events, 10% less exposure to altered river channels and riparian areas, and 50% fewer recreational trails than the surrounding landscape. Our results suggest that super-refugia sites (∼8200 km2 ) for some natural communities are underrepresented in the existing protected area network, a finding that can inform efforts to expand protected areas. Our case study highlights how considering exposure to multiple stressors can inform planning and practice to conserve biodiversity in a changing world.


Marco Conceptual a para Identificar Refugios de Múltiples Amenazas a Escala de Paisaje Resumen Desde la perspectiva de la conservación, la cuantificación de la capacidad potencial de refugio se ha enfocado principalmente en los refugios climáticos, los cuales son críticos para mantener la persistencia de las especies y los ecosistemas. Sin embargo, la protección ante otros factores estresantes, como los cambios inducidos por los humanos en los incendios y la hidrología, que causan la pérdida, degradación y fragmentación del hábitat, también son necesarios para asegurar que los esfuerzos de conservación enfocados en el clima no sean afectados por otras amenazas. Por lo tanto, los avances conceptuales y metodológicos para cuantificar los refugios potenciales ante múltiples factores estresantes causados por el humano son importantes para asegurar que los esfuerzos de conservación logren sus objetivos. Diseñamos una nueva estrategia conceptual, los dominios de los refugios, para evaluar la capacidad de refugio de un paisaje donde la exposición a múltiples factores estresantes es baja. En nuestro marco conceptual usamos los patrones de variabilidad ambiental (p. ej.: incremento en la frecuencia de veranos cálidos), los umbrales de resiliencia y la extensión e intensidad de los factores estresantes para identificar las áreas de refugios potenciales a partir de un conjunto de factores antropogénicos persistentes (p. ej.: cambios en el régimen de incendios). Para demostrar su utilidad, aplicamos el marco conceptual a un paisaje del sur de California. Los sitios con una alta capacidad de refugio (sitios de súper-refugios) tuvieron en promedio un 30% menos veranos extremadamente cálidos, 20% menos eventos de incendios y 50% menos senderos recreativos que el paisaje circundante. Nuestros resultados sugieren que los sitios de súper-refugios (∼ 8,200 km2 ) para algunas comunidades naturales están subrepresentados en la red existente de áreas protegidas, un resultado que puede orientar los esfuerzos por expandir las áreas protegidas. Nuestro estudio de caso resalta que considerar la exposición a múltiples amenazas puede guiar la planificación y la práctica de la conservación de la biodiversidad en un mundo cambiante.


Assuntos
Ecossistema , Refúgio de Vida Selvagem , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Humanos
4.
Proc Natl Acad Sci U S A ; 115(13): 3314-3319, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531054

RESUMO

The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990-2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Habitação , Urbanização , Incêndios Florestais/estatística & dados numéricos , Humanos , Fatores de Risco , Estados Unidos
5.
Nature ; 515(7525): 58-66, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373675

RESUMO

The impacts of escalating wildfire in many regions - the lives and homes lost, the expense of suppression and the damage to ecosystem services - necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.


Assuntos
Ecossistema , Incêndios , Austrália , Mudança Climática , Conservação dos Recursos Naturais , Política Ambiental , Incêndios/prevenção & controle , Incêndios/estatística & dados numéricos , Florestas , Geografia , Habitação , Atividades Humanas , Humanos , Região do Mediterrâneo , Densidade Demográfica , Gestão de Riscos , Sudoeste dos Estados Unidos
6.
Proc Natl Acad Sci U S A ; 114(52): 13750-13755, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229850

RESUMO

Growing human and ecological costs due to increasing wildfire are an urgent concern in policy and management, particularly given projections of worsening fire conditions under climate change. Thus, understanding the relationship between climatic variation and fire activity is a critically important scientific question. Different factors limit fire behavior in different places and times, but most fire-climate analyses are conducted across broad spatial extents that mask geographical variation. This could result in overly broad or inappropriate management and policy decisions that neglect to account for regionally specific or other important factors driving fire activity. We developed statistical models relating seasonal temperature and precipitation variables to historical annual fire activity for 37 different regions across the continental United States and asked whether and how fire-climate relationships vary geographically, and why climate is more important in some regions than in others. Climatic variation played a significant role in explaining annual fire activity in some regions, but the relative importance of seasonal temperature or precipitation, in addition to the overall importance of climate, varied substantially depending on geographical context. Human presence was the primary reason that climate explained less fire activity in some regions than in others. That is, where human presence was more prominent, climate was less important. This means that humans may not only influence fire regimes but their presence can actually override, or swamp out, the effect of climate. Thus, geographical context as well as human influence should be considered alongside climate in national wildfire policy and management.


Assuntos
Mudança Climática , Estações do Ano , Incêndios Florestais , Humanos , Estados Unidos
7.
Proc Natl Acad Sci U S A ; 113(14): 3725-34, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26929338

RESUMO

Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.


Assuntos
Mudança Climática , Florestas , Modelos Teóricos , Plantas , Dinâmica Populacional/tendências , Dióxido de Carbono , Clima , Ecossistema , Espécies Introduzidas , Nitrogênio , Temperatura
8.
Ecol Appl ; 26(7): 2323-2338, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755741

RESUMO

Wildfire is globally an important ecological disturbance affecting biochemical cycles and vegetation composition, but also puts people and their homes at risk. Suppressing wildfires has detrimental ecological effects and can promote larger and more intense wildfires when fuels accumulate, which increases the threat to buildings in the wildland-urban interface (WUI). Yet, when wildfires occur, typically only a small proportion of the buildings within the fire perimeter are lost, and the question is what determines which buildings burn. Our goal was to examine which factors are related to building loss when a wildfire occurs throughout the United States. We were particularly interested in the relative roles of vegetation, topography, and the spatial arrangement of buildings, and how their respective roles vary among ecoregions. We analyzed all fires that occurred within the conterminous United States from 2000 to 2010 and digitized which buildings were lost and which survived according to Google Earth historical imagery. We modeled the occurrence as well as the percentage of buildings lost within clusters using logistic and linear regression. Overall, variables related to topography and the spatial arrangement of buildings were more frequently present in the best 20 regression models than vegetation-related variables. In other words, specific locations in the landscape have a higher fire risk, and certain development patterns can exacerbate that risk. Fire policies and prevention efforts focused on vegetation management are important, but insufficient to solve current wildfire problems. Furthermore, the factors associated with building loss varied considerably among ecoregions suggesting that fire policy applied uniformly across the United States will not work equally well in all regions and that efforts to adapt communities to wildfires must be regionally tailored.


Assuntos
Conservação dos Recursos Naturais , Incêndios Florestais/estatística & dados numéricos , Humanos , Estados Unidos
9.
Conserv Biol ; 28(4): 1057-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24606578

RESUMO

Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Incêndios , Plântula/fisiologia , Urbanização , Região do Mediterrâneo , Densidade Demográfica , Dinâmica Populacional
10.
PLoS One ; 19(4): e0300346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656930

RESUMO

Across the Western United States, human development into the wildland urban interface (WUI) is contributing to increasing wildfire damage. Given that natural disasters often cause greater harm within socio-economically vulnerable groups, research is needed to explore the potential for disproportionate impacts associated with wildfire. Using Zillow Transaction and Assessment Database (ZTRAX), hereafter "Zillow", real estate data, we explored whether lower-priced structures were more likely to be damaged during the most destructive, recent wildfires in Southern California. Within fire perimeters occurring from 2000-2019, we matched property price data to burned and unburned structures. To be included in the final dataset, fire perimeters had to surround at least 25 burned and 25 unburned structures and have been sold at most seven years before the fire; five fires fit these criteria. We found evidence to support our hypothesis that lower-priced properties were more likely to be damaged, however, the likelihood of damage and the influence of property value significantly varied across individual fire perimeters. When considering fires individually, properties within two 2003 fires-the Cedar and Grand Prix-Old Fires-had statistically significantly decreasing burn damage with increasing property value. Occurring in 2007 and later, the other three fires (Witch-Poomacha, Thomas, and Woolsey) showed no significant relationship between price and damage. Consistent with other studies, topographic position, slope, elevation, and vegetation were also significantly associated with the likelihood of a structure being damaged during the wildfire. Driving time to the nearest fire station and previously identified fire hazard were also significant. Our results suggest that further studies on the extent and reason for disproportionate impacts of wildfire are needed. In the meantime, decision makers should consider allocating wildfire risk mitigation resources-such as fire-fighting and wildfire structural preparedness resources-to more socioeconomically vulnerable neighborhoods.


Assuntos
Incêndios Florestais , California , Humanos , Incêndios
11.
Nat Plants ; 9(11): 1810-1817, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37845335

RESUMO

Large-scale, abrupt ecosystem change in direct response to climate extremes is a critical but poorly documented phenomenon1. Yet, recent increases in climate-induced tree mortality raise concern that some forest ecosystems are on the brink of collapse across wide environmental gradients2,3. Here we assessed climatic and productivity trends across the world's five Mediterranean forest ecosystems from 2000 to 2021 and detected a large-scale, abrupt forest browning and productivity decline in Chile (>90% of the forest in <100 days), responding to a sustained, acute drought. The extreme dry and warm conditions in Chile, unprecedented in the recent history of all Mediterranean-type ecosystems, are akin to those projected to arise in the second half of the century4. Long-term recovery of this forest is uncertain given an ongoing decline in regional water balance. This dramatic plummet of forest productivity may be a spyglass to the future for other Mediterranean ecosystems.


Assuntos
Mudança Climática , Ecossistema , Florestas , Árvores/fisiologia , Secas
12.
J Environ Manage ; 113: 301-7, 2012 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-23064248

RESUMO

Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ~ 0.25).


Assuntos
Incêndios , California , Ecossistema , Modelos Teóricos , Gestão de Riscos
13.
J Environ Manage ; 92(7): 1882-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21477919

RESUMO

The conversion of natural habitat to urban settlements is a primary driver of biodiversity loss, and species' persistence is threatened by the extent, location, and spatial pattern of development. Urban growth models are widely used to anticipate future development and to inform conservation management, but the source of spatial input to these models may contribute to uncertainty in their predictions. We compared two sources of historic urban maps, used as input for model calibration, to determine how differences in definition and scale of urban extent affect the resulting spatial predictions from a widely used urban growth model for San Diego County, CA under three conservation scenarios. The results showed that rate, extent, and spatial pattern of predicted urban development, and associated habitat loss, may vary substantially depending on the source of input data, regardless of how much land is excluded from development. Although the datasets we compared both represented urban land, different types of land use/land cover included in the definition of urban land and different minimum mapping units contributed to the discrepancies. Varying temporal resolution of the input datasets also contributed to differences in projected rates of development. Differential predicted impacts to vegetation types illustrate how the choice of spatial input data may lead to different conclusions relative to conservation. Although the study cannot reveal whether one dataset is better than another, modelers should carefully consider that geographical reality can be represented differently, and should carefully choose the definition and scale of their data to fit their research objectives.


Assuntos
Conservação dos Recursos Naturais/métodos , Coleta de Dados , Ecossistema , Previsões/métodos , Modelos Teóricos , Urbanização/tendências , California , Simulação por Computador , Fatores de Tempo
14.
Sci Adv ; 7(30)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34290099

RESUMO

Autumn and winter Santa Ana wind (SAW)-driven wildfires play a substantial role in area burned and societal losses in southern California. Temperature during the event and antecedent precipitation in the week or month prior play a minor role in determining area burned. Burning is dependent on wind intensity and number of human-ignited fires. Over 75% of all SAW events generate no fires; rather, fires during a SAW event are dependent on a fire being ignited. Models explained 40 to 50% of area burned, with number of ignitions being the strongest variable. One hundred percent of SAW fires were human caused, and in the past decade, powerline failures have been the dominant cause. Future fire losses can be reduced by greater emphasis on maintenance of utility lines and attention to planning urban growth in ways that reduce the potential for powerline ignitions.

15.
Science ; 370(6519)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33214246

RESUMO

Fire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening species with extinction and transforming terrestrial ecosystems. Conservation of Earth's biological diversity will be achieved only by recognizing and responding to the critical role of fire. In the Anthropocene, this requires that conservation planning explicitly includes the combined effects of human activities and fire regimes. Improved forecasts for biodiversity must also integrate the connections among people, fire, and ecosystems. Such integration provides an opportunity for new actions that could revolutionize how society sustains biodiversity in a time of changing fire activity.


Assuntos
Biodiversidade , Mudança Climática , Extinção Biológica , Incêndios Florestais , Animais , Espécies em Perigo de Extinção , Previsões , Atividades Humanas , Humanos
16.
Conserv Biol ; 23(3): 758-69, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22748094

RESUMO

Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial analysis of relationships between people and fire may help identify areas where increases in fire frequency will threaten ecologically valuable areas.


Assuntos
Clima , Conservação dos Recursos Naturais/métodos , Ecossistema , Incêndios/estatística & dados numéricos , Chile , Geografia , Atividades Humanas , Humanos , Região do Mediterrâneo , América do Norte , Densidade Demográfica , África do Sul , Austrália Ocidental
18.
PLoS One ; 13(8): e0201680, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30080880

RESUMO

Understanding where and how fire patterns may change is critical for management and policy decision-making. To map future fire patterns, statistical correlative models are typically developed, which associate observed fire locations with recent climate maps, and are then applied to maps of future climate projections. A potential source of uncertainty is the common omission of static or dynamic vegetation as predictor variables. We therefore assessed the sensitivity of future fire projections to different combinations of vegetation maps used as explanatory variables in a statistically based fire modeling framework. We compared models without vegetation to models that incorporated static vegetation maps and that included output from a dynamic vegetation model that imposed three scenarios of fire and one scenario of land use change. We mapped projected future probability of all and large fires (> = 40 ha) under two climate scenarios in a heterogeneous study area spanning a large elevational gradient in the Sierra Nevada, California, USA. Results showed high model sensitivity to the treatment of vegetation as a predictor variable, particularly for models of large fire probability and for models accounting for wildfire effects on vegetation, which lowered future fire probability. Some scenarios resulted in opposite directional trends in the extent and probability of future fire, which could have serious implications for policy and management resource allocation. Model sensitivity resulted from high relative importance of vegetation variables in the baseline models and from large predicted changes in vegetation, particularly when simulating wildfire. Although statistical fire models often omit vegetation due to uncertainty, model sensitivity demonstrated here suggests a need to account for that uncertainty. Coupling statistical and processed based models may be a promising approach to reflect a more plausible range of scenarios.


Assuntos
Mudança Climática , Incêndios/estatística & dados numéricos , Modelos Estatísticos , Desenvolvimento Vegetal , Probabilidade
19.
PLoS One ; 13(9): e0200203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192760

RESUMO

In many parts of the world, the combined effects of habitat fragmentation and altered disturbance regimes pose a significant threat to biodiversity. This is particularly true in Mediterranean-type ecosystems (MTEs), which tend to be fire-prone, species rich, and heavily impacted by human land use. Given the spatial complexity of overlapping threats and species' vulnerability along with limited conservation budgets, methods are needed for prioritizing areas for monitoring and management in these regions. We developed a multi-criteria Pareto ranking methodology for prioritizing spatial units for conservation and applied it to fire threat, habitat fragmentation threat, species richness, and genetic biodiversity criteria in San Diego County, California, USA. We summarized the criteria and Pareto ranking results (from west to east) within the maritime, coastal, transitional, inland climate zones within San Diego County. Fire threat increased from the maritime zone eastward to the transitional zone, then decreased in the mountainous inland climate zone. Number of fires and fire return interval departure were strongly negatively correlated. Fragmentation threats, particularly road density and development density, were highest in the maritime climate zone, declined towards the east, and were positively correlated. Species richness criteria showed distributions among climate zones similar to those of the fire threat variables. When using species richness and fire threat criteria, most lower-ranked (higher conservation priority) units occurred in the coastal and transitional zones. When considering genetic biodiversity, lower-ranked units occurred more often in the mountainous inland zone. With Pareto ranking, there is no need to select criteria weights as part of the decision-making process. However, negative correlations and larger numbers of criteria can result in more units assigned to the same rank. Pareto ranking is broadly applicable and can be used as a standalone decision analysis method or in conjunction with other methods.


Assuntos
Biodiversidade , Clima , Conservação dos Recursos Naturais/métodos , Ecossistema , Incêndios Florestais , California
20.
Ecol Appl ; 17(5): 1388-402, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17708216

RESUMO

Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the spatial arrangement of ignitions and fuels on the landscape, in addition to nonlinear relationships, will be important to fire managers and conservation planners because fire risk may be related to specific levels of housing density that can be accounted for in land use planning. With more fires occurring in close proximity to human infrastructure, there may also be devastating ecological impacts if development continues to grow farther into wildland vegetation.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Ecossistema , Incêndios/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , California , Incêndios/prevenção & controle , Previsões , Geografia , Humanos , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa