Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMC Vet Res ; 20(1): 46, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310284

RESUMO

BACKGROUND: Intrauterine devices (IUD) are used in the veterinary practice as the non-pharmacological method of oestrus suppression in mares. When placed in the uterus, IUD create a physical contact with the endometrium that mimics the presence of an equine embryo. However, the mechanism of their action has not been fully elucidated. The objective of the present study was to examine the effect of mechanical stimulation of IUD on mare`s endometrium in both in vitro and in vivo study. For this purpose, we demonstrated the effect of IUD on prostaglandin (PG) F2α and PGE2 secretion, and mRNA transcription of genes involved in PG synthesis pathway in equine endometrial cells in vitro. In the in vivo study, we aimed to compare short-term effect of IUD inserted on day 0 (oestrus) with day 5-6 post-ovulation (the specific time when embryo reaches uterus after fertilization) on PG secretion from equine endometrium. To determine the long-term effect on PG synthase mRNA transcription, a single endometrial biopsy was taken only once within each group of mares at certain time points of the estrous cycle from mares placement with IUD on days 0 or 5-6 post-ovualtion. RESULTS: We showed for the first time that the incubation of the endometrial cells with the presence of IUD altered the pattern of PG synthase mRNA transcription in equine epithelial and stromal endometrial cells. In vivo, in mares placement with IUD on day 0, PGE2 concentrations in blood plasma were upregulated between 1 and 6, and at 10 h after the IUD insertion, compared with the control mares (P < 0.05). Moreover, the decrease of PTGFS mRNA transcription on day 16- 18, associated with an elevation in PTGES mRNA transcription on day 20 -21 of the estrous cycle in endometrial biopsies collected from mares placement with IUD on days 5-6 suggest an antiluteolytic action of IUD during the estrous cycle. CONCLUSION: We conclude that the application of IUD may mimic the equine conceptus presence through the physical contact with the endometrium altering PG synthase transcription, and act as a potent modulator of endometrial PG secretion both in vitro and in vivo.


Assuntos
Dinoprostona , Dispositivos Intrauterinos , Cavalos/genética , Animais , Feminino , Dinoprostona/metabolismo , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandinas F/metabolismo , Endométrio/metabolismo , Dispositivos Intrauterinos/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Reprod Domest Anim ; 59 Suppl 3: e14657, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39396880

RESUMO

Increased synthesis and deposition of collagen (COL) in the extracellular matrix (ECM) of equine endometrium contributes to endometrosis. Toll-like receptors (TLRs) are transmembrane receptors involved in the innate immune response, recognized for their role in antigen recognition and previously associated with equine endometritis. The TLRs not only recognize pathogen-associated molecular patterns but also regulate inflammations, fibrosis and cancer. The aim of this study was to explore the relationship between TLR expression at different stages of Kenney and Doig's (K-D) grading and COL1 expression during the follicular phase of the oestrous cycle. Forty samples of endometrial tissues were collected post-mortem from mares on the follicular phase of the oestrous cycle (10 samples of each K-D category). Relative mRNA transcription of TLR-2, TLR-4 and COL1A2 genes was assessed using qPCR, and COL1 protein expression by Western blot analysis. The COL1A2 transcription increased in category IIB when compared to categories I, IIA and III endometria (p < .01). The relative protein abundance of COL1 showed no significant differences between endometrial categories (p > .05). As for the TLRs mRNA transcription, TLR-2/-4 transcripts increased in IIA when compared to the other K-D endometria categories (p < .05). Our findings suggest that TLRs may be involved in the initiation of the endometrial inflammatory response. Additional studies are needed to explore TLRs' potential role as diagnostic markers for monitoring inflammation progression and fibrosis development, as well as their involvement in the mechanisms underlying fibrotic pathways.


Assuntos
Endométrio , Doenças dos Cavalos , RNA Mensageiro , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Animais , Cavalos , Feminino , Endométrio/metabolismo , Endométrio/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Doenças dos Cavalos/genética , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/patologia , Fase Folicular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Endometrite/veterinária , Endometrite/metabolismo , Endometrite/patologia , Endometrite/genética
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835008

RESUMO

Myeloperoxidase is an enzyme released by neutrophils when neutrophil extracellular traps (NETs) are formed. Besides myeloperoxidase activity against pathogens, it was also linked to many diseases, including inflammatory and fibrotic ones. Endometrosis is a fibrotic disease of the mare endometrium, with a large impact on their fertility, where myeloperoxidase was shown to induce fibrosis. Noscapine is an alkaloid with a low toxicity, that has been studied as an anti-cancer drug, and more recently as an anti-fibrotic molecule. This work aims to evaluate noscapine inhibition of collagen type 1 (COL1) induced by myeloperoxidase in equine endometrial explants from follicular and mid-luteal phases, at 24 and 48 h of treatment. The transcription of collagen type 1 alpha 2 chain (COL1A2), and COL1 protein relative abundance were evaluated by qPCR and Western blot, respectively. The treatment with myeloperoxidase increased COL1A2 mRNA transcription and COL1 protein, whereas noscapine was able to reduce this effect with respect to COL1A2 mRNA transcription, in a time/estrous cycle phase-dependent manner (in explants from the follicular phase, at 24 h of treatment). Our study indicates that noscapine is a promising drug to be considered as an anti-fibrotic molecule to prevent endometrosis development, making noscapine a strong candidate to be applied in future endometrosis therapies.


Assuntos
Fibrose , Noscapina , Peroxidase , Animais , Feminino , Colágeno/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/veterinária , Cavalos/metabolismo , Noscapina/farmacologia , Noscapina/uso terapêutico , Peroxidase/antagonistas & inibidores , Peroxidase/metabolismo , RNA Mensageiro/metabolismo
4.
Reprod Domest Anim ; 57(7): 771-783, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35373395

RESUMO

The most common uterine diseases in bitches occurring during diestrus are cystic endometrial hyperplasia (CEH) and pyometra. These diseases can coexist as CEH-pyometra complex (CEH-P). Their pathogenesis has not been fully explained. Peroxisome proliferator-activated receptors (PPARs) are important factors regulating mammalian reproductive function and inflammatory processes. Although there is a lack of data concerning the expression of PPARs in the canine endometrium during CEH and CEH-P, we hypothesized that they might be involved in the development of pathological disorders of the canine endometrium. Therefore, the current study was conducted to evaluate and compare PPARα, PPARδ and PPARγ mRNA expression using quantitative real-time PCR (qPCR) and their immunolocalization using immunohistochemistry (IHC) staining in the endometrium of clinically healthy bitches (control group; n = 8) and those with CEH (n = 8) or CEH-P (n = 8). For quantification, the arithmetic means of all intensities of immunostaining from the cells were measured with the optical density. PPARα, PPARδ and PPARγ were detected in the luminal epithelium, glandular epithelium and stromal cells. The mRNA transcription of PPARα was higher in the CEH group than in the control group (p < .05). Additionally, the mRNA expression and immunostaining intensities of PPARδ and PPARγ in the endometrium in the CEH-P group were downregulated relative to those in the control group (p < .05). Moreover, the serum progesterone concentration measured by direct radioimmunoassay was decreased in the CEH-P group compared to the control group (p < .001) and CEH group (p < .05). The obtained results indicate that PPARs are present in the canine endometrium and that their mRNA profile and intensity levels change under pathological conditions such as CEH and CEH-P. This finding may suggest a correlation between changes in the PPAR expression profile and hormonal disturbances, as well as the potential involvement of PPARs in signal transduction during inflammatory processes occurring in the endometrium during CEH-P. These results pave the way to further research into the role of PPARs in the pathogenesis of CEH and CEH-P in female dogs.


Assuntos
Doenças do Cão , Hiperplasia Endometrial , PPAR delta , Piometra , Animais , Doenças do Cão/patologia , Cães , Hiperplasia Endometrial/veterinária , Endométrio/metabolismo , Feminino , Mamíferos , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR delta/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Piometra/patologia , Piometra/veterinária , RNA Mensageiro/metabolismo
5.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069423

RESUMO

Endometrosis is a reproductive pathology that is responsible for mare infertility. Our recent studies have focused on the involvement of neutrophil extracellular traps enzymes, such as elastase (ELA), in the development of equine endometrosis. Noscapine (NOSC) is an alkaloid derived from poppy opium with anticough, antistroke, anticancer, and antifibrotic properties. The present work investigates the putative inhibitory in vitro effect of NOSC on collagen type I alpha 2 chain (COL1A2) mRNA and COL1 protein relative abundance induced by ELA in endometrial explants of mares in the follicular or mid-luteal phases at 24 or 48 h of treatment. The COL1A2 mRNA was evaluated by qPCR and COL1 protein relative abundance by Western blot. In equine endometrial explants, ELA increased COL 1 expression, while NOSC inhibited it at both estrous cycle phases and treatment times. These findings contribute to the future development of new endometrosis treatment approaches. Noscapine could be a drug capable of preventing collagen synthesis in mare's endometrium and facilitate the therapeutic approach.


Assuntos
Colágeno Tipo I/metabolismo , Endometriose/metabolismo , Noscapina/farmacologia , Animais , Colágeno/metabolismo , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/genética , Endometriose/tratamento farmacológico , Endometriose/veterinária , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Ciclo Estral , Armadilhas Extracelulares/metabolismo , Feminino , Fibrose , Doenças dos Cavalos/patologia , Cavalos , Noscapina/metabolismo , Elastase Pancreática/metabolismo , Inibidores de Proteases/farmacologia
6.
BMC Vet Res ; 16(1): 343, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943074

RESUMO

BACKGROUND: Equine endometrosis is a chronic degenerative condition, described as endometrial fibrosis that forms in the stroma, under the basement membrane and around the endometrial glands. The role of lysophosphatidic acid (LPA) in the development of tissue fibrosis varies depending on the organ, and its profibrotic role in mare endometrosis remains unclear. The study aimed to establish the endometrial presence of LPA and its receptors (LPAR1-4), together with its effects on connective tissue growth factor (CTGF) and prostaglandins (PG) secretion from equine endometrium under physiological (estrous cycle), or pathological conditions (endometrosis). Mare endometria in the mid-luteal phase (n = 5 for each category I, IIA, IIB, III of Kenney and Doig) and in the follicular phase (n = 5 for each category I, IIA, III and n = 4 for IIB) were used. In experiment 1, the levels of LPA, LPAR1-4 mRNA level and protein abundance were investigated in endometria at different stages of endometrosis. In experiment 2, the in vitro effect of LPA (10- 9 M) on the secretion of CTGF and PGs from endometrial tissue explants at different stages of endometrosis were determined. RESULTS: Endometrial LPA concentration was higher in the mid-luteal phase compared to the follicular phase in category I endometrium (P < 0.01). There was an alteration in endometrial concentrations of LPA and LPAR1-4 protein abundance in the follicular phase at different stages of endometrosis (P < 0.05). Additionally, LPA increased the secretion of PGE2 from category I endometrium in both phases of the estrous cycle (P < 0.05). The effect of LPA on the secretion of CTGF and PGF2α from endometrial tissue was altered depending on different stages of endometrosis (P < 0.05). CONCLUSION: Our data indicate that endometrosis disturbs proper endometrial function and is associated with altered endometrial LPA concentration, its receptor expression and protein abundance, PGE2/PGF2α ratio, and CTGF secretion in response to LPA. These changes could influence several physiological events occurring in endometrium in mare during estrous cycle and early pregnancy.


Assuntos
Endometriose/veterinária , Endométrio/metabolismo , Doenças dos Cavalos/metabolismo , Lisofosfolipídeos/metabolismo , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Dinoprostona/metabolismo , Endometriose/metabolismo , Endométrio/patologia , Ciclo Estral/metabolismo , Feminino , Fibrose , Doenças dos Cavalos/patologia , Cavalos , RNA Mensageiro/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Doenças Uterinas/veterinária
7.
Cell Tissue Res ; 374(1): 149-163, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29637306

RESUMO

Skin injuries in mammals are healed through repair or regeneration. Our previous studies demonstrated that deficient expression of the transcription factor Foxn1 in epidermis of nude mice accounts for their skin's pronounced regenerative properties. Since homeostasis within the skin depends on complex interactions between the epidermal and underlying dermal layers, the present study characterizes and compares isolated dermal fibroblasts (DFs) between regenerative nude (Foxn1 deficient) mice and their wild-type Balb/c counterparts. Nude DFs exhibited a higher cumulative number of population doublings (cumulative PD) at low seeding density and increased adipogenic differentiation capacity relative to their Balb/c DF counterparts. Nude DFs displayed reduced migration and gel contraction, functional features associated with wound healing. The comparison of transforming growth factor ß family (TGFß) expression showed significantly higher levels of Tgfß3 transcript between nude and Balb/c mice but no differences were detected for Tgfß1. Nude DFs were specifically sensitive to the presence of the pro-regenerative TGFß3 isoform, showing increased collagen I deposition and alpha smooth muscle actin expression. Viability of Balb/c DFs was stimulated by keratinocyte conditioned media (KCM) from Balb/c (Foxn1 active) but inhibited by nude (Foxn1 deficient) KCM. In contrast, nude DFs did not respond to either KCMs with respect to their metabolic activity. Collectively, the enhanced plasticity and greater sensitivity of nude DFs to TGFß3 stimulation are indicative of and consistent with their pro-regenerative characteristics. These data support the hypothesis that epidermal Foxn1 plays a critical role in determining the DFs regenerative phenotype.


Assuntos
Fibroblastos/citologia , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Pele/citologia , Pele/metabolismo , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta3/biossíntese , Animais , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/deficiência , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/farmacologia
8.
Reprod Domest Anim ; 53 Suppl 2: 66-69, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30238664

RESUMO

We have shown that bacteria induce neutrophil extracellular traps (NETs) in mare endometrium. Besides killing pathogens, NETs may contribute for endometrosis (chronic endometrium fibrosis). Since elastase (ELA) is a NETs component that regulates fibrosis and prostaglandin (PG) output, the aim was to evaluate if inhibition of ELA would affect collagen 1 (COL1) transcription and PGs secretion by endometrium explants, in different estrous cycle phases. Follicular-FP (n = 8) and mid luteal-MLP (n = 7) phases explants were cultured for 24-48 hr with medium alone (Control), ELA (0.5 µg/ml,1 µg/ml), sivelestat - ELA inhibitor (INH,10 µg/ml), or ELA (0.5 µg/ml,1 µg/ml) + INH (10 µg/ml). COL1 gene transcription was done by qRT-PCR and PGE2 and PGF2 α determination in culture medium by EIA. In FP, at 24 hr, ELA0.5 increased COL1 transcription (p < 0.001) but its inhibition (ELA0.5 + INH10) decreased COL1 transcription (p < 0.01) and PGF2 α production (p < 0.05). Also, ELA0.5 + INH10 or ELA1 + INH10 raised PGE2 production (p < 0.01). At 48 hr, ELA1 increased COL1 transcription (p < 0.01) and PGF2 α production (p < 0.001), but its inhibition (ELA1 + INH10) decreased these actions (p < 0.01; p < 0.05, respectively). Besides, ELA1 + INH10 incubation increased PGE2 (p < 0.05). PGF2 α also augmented with ELA0.5 (p < 0.001), but lowered with ELA0.5 + INH10 (p < 0.01). In MLP, ELA0.5 up-regulated COL1 transcription (24 hr, p < 0.01; 48 hr, p < 0.001), but ELA0.5 + INH10 decreased it (24 hr, p < 0.05; 48 hr, p < 0.001). At 48 hr, incubation with ELA1 also increased COL1 transcription and PGF2 α production (p < 0.05), but PGF2 α production decreased with ELA1 + INH10 incubation (p < 0.05). PGE2 production was higher in ELA1 + INH10 incubation (p < 0.05). Therefore, ELA inhibition may reduce the establishment of mare endometrial fibrosis by stimulating the production of anti-fibrotic PGE2 and inhibiting pro-fibrotic PGF2 α.


Assuntos
Dinoprosta/metabolismo , Dinoprostona/metabolismo , Endométrio/efeitos dos fármacos , Cavalos/fisiologia , Elastase Pancreática/farmacologia , Animais , Colágeno/genética , Colágeno/metabolismo , Ciclo Estral , Feminino
9.
Anim Reprod ; 21(3): e20240070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286368

RESUMO

The path to fertility in the mare requires an understanding of the hormonal influences, the immune response, genetics, and epigenetic mechanisms involved not only in physiological reproductive processes, but also such pathologies as endometritis and endometrosis. Endometritis may lead to endometrosis establishment. In the presence of endometritis, neutrophils arrive at the mare endometrium, and form neutrophil extracellular traps. While NETosis plays pivotal roles, prolonged inflammation can lead to chronic endometritis, endometrosis, and fertility issues. Matrix metalloproteinases and epigenetic changes influence the course of endometrosis. Inhibitors of specific enzymes involved in NETosis and epigenetic inhibitors have shown potential in reducing pro-fibrotic effects. Collagen type III (COL3) has emerged as a putative biomarker, correlating with endometrosis and useful in fertility assessment. Thus, COL3 may offer a non-invasive diagnostic tool, as a complement to histopathological methods. Epigenetic modifications and miRNA expressions offer new avenues for therapeutic strategies, emphasizing the importance of understanding the cellular mechanisms at play in mare endometrial fibrosis.

10.
Sci Rep ; 14(1): 3900, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365979

RESUMO

The establishment of the fetomaternal interface depends on precisely regulated communication between the conceptus and the uterine environment. Recent evidence suggests that microRNAs (miRNAs) may play an important role in embryo-maternal dialogue. This study aimed to determine the expression profile of endometrial miRNAs during days 26-28 of equine pregnancy. Additionally, the study aimed to predict target genes for differentially expressed miRNAs (DEmiRs) and their potential role in embryo attachment, adhesion, and implantation. Using next-generation sequencing, we identified 81 DEmiRs between equine endometrium during the pre-attachment period of pregnancy (day 26-28) and endometrium during the mid-luteal phase of the estrous cycle (day 10-12). The identified DEmiRs appear to have a significant role in regulating the expression of genes that influence cell fate and properties, as well as endometrial receptivity formation. These miRNAs include eca-miR-21, eca-miR-126-3p, eca-miR-145, eca-miR-451, eca-miR-491-5p, members of the miR-200 family, and the miRNA-17-92 cluster. The target genes predicted for the identified DEmiRs are associated with ion channel activity and sphingolipid metabolism. Furthermore, it was noted that the expression of mucin 1 and leukemia inhibitory factor, genes potentially regulated by the identified DEmiRs, was up-regulated at day 26-28 of pregnancy. This suggests that miRNAs may play a role in regulating specific genes to create a favorable uterine environment that is necessary for proper attachment, adhesion, and implantation of the embryo in mares.


Assuntos
Implantação do Embrião , MicroRNAs , Gravidez , Cavalos/genética , Animais , Feminino , Implantação do Embrião/genética , Endométrio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Útero/metabolismo , Embrião de Mamíferos/metabolismo
11.
Animals (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048467

RESUMO

Endometrosis negatively affects endometrial function and fertility in mares, due to excessive deposition of type I (COL1) and type III (COL3) collagens. The pro-fibrotic transforming growth factor (TGF-ß1) induces myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, and collagen synthesis. In humans, fibrosis has been linked to epigenetic mechanisms. To the best of our knowledge, this has not been described in mare endometrium. Therefore, this study aimed to investigate the in vitro epigenetic regulation in TGF-ß1-treated mare endometrial fibroblasts and the use of 5-aza-2'-deoxycytidine (5-aza-dC), an epigenetic modifier, as a putative treatment option for endometrial fibrosis. Methods and Results: The in vitro effects of TGF-ß1 and of 5-aza-dC on DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), COL1A1, COL3A1, and α-SMA transcripts were analyzed in endometrial fibroblasts, and COL1 and COL3 secretion in a co-culture medium. TGF-ß1 upregulated DNMT3A transcripts and collagen secretion. In TGF-ß1-treated endometrial fibroblasts, DNA methylation inhibitor 5-aza-dC decreased collagen transcripts and secretion, but not α-SMA transcripts. Conclusion: These findings suggest a possible role of epigenetic mechanisms during equine endometrial fibrogenesis. The in vitro effect of 5-aza-dC on collagen reduction in TGF-ß1-treated fibroblasts highlights this epigenetic involvement. This may pave the way to different therapeutic approaches for endometrosis.

12.
Sci Rep ; 13(1): 15938, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743390

RESUMO

Mare endometrial fibrosis (endometrosis), is one of the main causes of equine infertility. Despite the high prevalence, both ethology, pathogenesis and the nature of its progression remain poorly understood. Recent studies have shown that microRNAs (miRNAs) are important regulators in multiple cellular processes and functions under physiological and pathological circumstances. In this article, we reported changes in miRNA expression at different stages of endometrosis and the effect of transforming growth factor (TGF)-ß1 on the expression of the most dysregulated miRNAs. We identified 1, 26, and 5 differentially expressed miRNAs (DEmiRs), in categories IIA (mild fibrosis), IIB (moderate fibrosis), and III (severe fibrosis) groups compared to category I (no fibrosis) endometria group, respectively (Padjusted < 0.05, log2FC ≥ 1.0/log2FC ≤ - 1.0). This study indicated the potential involvement of miRNAs in the regulation of the process associated to the development and progression of endometrosis. The functional enrichment analysis revealed, that DEmiRs target genes involved in the mitogen-activated protein kinases, Hippo, and phosphoinositide-3-kinase (PI3K)-Akt signalling pathways, focal adhesion, and extracellular matrix-receptor interaction. Moreover, we demonstrated that the most potent profibrotic cytokine-TGF-ß1-downregulated novel-eca-miR-42 (P < 0.05) expression in fibroblasts derived from endometria at early-stage endometrosis (category IIA).


Assuntos
MicroRNAs , Doenças Uterinas , Animais , Feminino , Cavalos , Humanos , Endométrio , Citocinas , Fibroblastos , MicroRNAs/genética
13.
Animals (Basel) ; 12(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883401

RESUMO

Collagen pathological deposition in equine endometrium (endometrosis) is responsible for infertility. Kenney and Doig's endometrial biopsy histopathological classification is the gold standard method for endometrosis evaluation, whereby blood biomarkers identification would be less invasive and could provide additional information regarding endometrosis diagnosis and fertility prognosis. This study aimed to identify blood biomarkers for endometrosis diagnosis (42 mares were used in experiment 1), and fertility assessment (50 mares were used in experiment 2). Reproductive examination, endometrial biopsy histopathological classification (Kenney and Doig) and blood collection were performed. Endometrium and serum collagen type I (COL1) and type III (COL3), and hydroxyproline concentrations were measured (ELISA). Serum COL3 cut-off value of 60.9 ng/mL allowed healthy endometria (category I) differentiation from endometria with degenerative/fibrotic lesions (categories IIA, IIB or III) with 100% specificity and 75.9% sensitivity. This cut-off value enabled category I + IIA differentiation from IIB + III (76% specificity, 81% sensitivity), and category III differentiation from others (65% specificity, 92.3% sensitivity). COL1 and hydroxyproline were not valid as blood biomarkers. Serum COL3 cut-off value of 146 ng/mL differentiated fertile from infertile mares (82.4% specificity, 55.6% sensitivity), and was not correlated with mares' age. Only COL3 may prove useful as a diagnostic aid in mares with endometrial fibrosis and as a fertility indicator.

14.
Front Vet Sci ; 9: 970003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032279

RESUMO

Endometrium type I (COL1) and III (COL3) collagen accumulation, periglandular fibrosis and mare infertility characterize endometrosis. Metalloproteinase-2 (MMP-2), MMP-9 and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) are involved in collagen turnover. Since epigenetic changes may control fibroproliferative diseases, we hypothesized that epigenetic mechanisms could modulate equine endometrosis. Epigenetic changes can be reversed and therefore extremely promising for therapeutic use. Methylation pattern analysis of a particular gene zone is used to detect epigenetic changes. DNA methylation commonly mediates gene repression. Thus, this study aimed to evaluate if the transcription of some genes involved in equine endometrosis was altered with endometrial fibrosis, and if the observed changes were epigenetically modulated, through DNA methylation analysis. Endometrial biopsies collected from cyclic mares were histologically classified (Kenney and Doig category I, n = 6; category IIA, n = 6; category IIB, n = 6 and category III, n = 6). Transcription of COL1A1, COL1A2, COL3A1, MMP2, MMP9, TIMP1, and TIMP2 genes and DNA methylation pattern by pyrosequencing of COL1A1, MMP2, MMP9, TIMP1 genes were evaluated. Both MMP2 and MMP9 transcripts decreased with fibrosis, when compared with healthy endometrium (category I) (P < 0.05). TIMP1 transcripts were higher in category III, when compared to category I endometrium (P < 0.05). No differences were found for COL1A1, COL1A2, COL3A1 and TIMP2 transcripts between endometrial categories. There were higher methylation levels of (i) COL1A1 in category IIB (P < 0.05) and III (P < 0.01), when compared to category I; (ii) MMP2 in category III, when compared to category I (P < 0.001) and IIA (P < 0.05); and (iii) MMP9 in category III, when compared to category I and IIA (P < 0.05). No differences in TIMP1 methylation levels were observed between endometrial categories. The hypermethylation of MMP2 and MMP9, but not of COL1A1 genes, occurred simultaneously with a decrease in their mRNA levels, with endometrial fibrosis, suggesting that this hypermethylation is responsible for repressing their transcription. Our results show that endometrosis is epigenetically modulated by anti-fibrotic genes (MMP2 and MMP9) inhibition, rather than fibrotic genes activation and therefore, might be promising targets for therapeutic use.

15.
Cells ; 10(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34685765

RESUMO

Several recent reports have highlighted the onset of vaccine-induced thrombotic thrombocytopaenia (VITT) in some recipients (approximately 1 case out of 100k exposures) of the ChAdOx1 nCoV-19 vaccine (AstraZeneca). Although the underlying events leading to this blood-clotting phenomenon has yet to be elucidated, several critical observations present a compelling potential mechanism. Thrombus formation requires the von Willebrand (VWF) protein to be in ultra-large multimeric state. The conservation of this state is controlled by the ADAMTS13 enzyme, whose proteolytic activity reduces the size of VWF multimers, keeping blood clotting at bay. However, ADAMTS13 cannot act on VWF that is bound to platelet factor 4 (PF4). As such, it is of particular interest to note that a common feature between subjects presenting with VITT is high titres of antibodies against PF4. This raises the possibility that these antibodies preserve the stability of ultra-large VWF complexes, leading to the formation of endothelium-anchored VWF strings, which are capable of recruiting circulating platelets and causing uncontrolled thrombosis in terminal capillaries. Here, we share our viewpoint about the current understanding of the VITT pathogenesis involving the prevention of ADAMTS13's activity on VWF by PF4 antibody-mediated stabilisation/ protection of the PF4-VWF complex.


Assuntos
Proteína ADAMTS13/metabolismo , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Trombocitopenia/imunologia , Anticorpos , Autoanticorpos/imunologia , Plaquetas/metabolismo , ChAdOx1 nCoV-19 , Cristalografia por Raios X , Células Endoteliais/imunologia , Humanos , Fator Plaquetário 4/metabolismo , Polimorfismo Genético , Domínios Proteicos , Trombocitopenia/etiologia , Trombose/etiologia , Fator de von Willebrand/metabolismo
16.
Life (Basel) ; 11(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685439

RESUMO

Tissue fibrosis is characterized by excessive deposition of extracellular matrix (ECM) components that result from the disruption of regulatory processes responsible for ECM synthesis, deposition, and remodeling. Fibrosis develops in response to a trigger or injury and can occur in nearly all organs of the body. Thus, fibrosis leads to severe pathological conditions that disrupt organ architecture and cause loss of function. It has been estimated that severe fibrotic disorders are responsible for up to one-third of deaths worldwide. Although intensive research on the development of new strategies for fibrosis treatment has been carried out, therapeutic approaches remain limited. Since stem cells, especially mesenchymal stem cells (MSCs), show remarkable self-renewal, differentiation, and immunomodulatory capacity, they have been intensively tested in preclinical studies and clinical trials as a potential tool to slow down the progression of fibrosis and improve the quality of life of patients with fibrotic disorders. In this review, we summarize in vitro studies, preclinical studies performed on animal models of human fibrotic diseases, and recent clinical trials on the efficacy of allogeneic and autologous stem cell applications in severe types of fibrosis that develop in lungs, liver, heart, kidney, uterus, and skin. Although the results of the studies seem to be encouraging, there are many aspects of cell-based therapy, including the cell source, dose, administration route and frequency, timing of delivery, and long-term safety, that remain open areas for future investigation. We also discuss the contemporary status, challenges, and future perspectives of stem cell transplantation for therapeutic options in fibrotic diseases as well as we present recent patents for stem cell-based therapies in organ fibrosis.

17.
Stem Cell Rev Rep ; 17(3): 719-738, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025392

RESUMO

Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Adipócitos , Animais , Cavalos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco , Células Estromais , Suínos
18.
Life (Basel) ; 11(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34685478

RESUMO

Cathepsin G (CAT) is a protease released by neutrophils when forming neutrophil extracellular traps that was already associated with inducing type I collagen (COL1) in equine endometrium in vitro. Endometrosis is a fibrotic condition mainly characterized by COL1 deposition in the equine endometrium. The objective was to evaluate if noscapine (an alkaloid for cough treatment with anti-neoplastic and anti-fibrotic properties) would reduce COL1A2 transcription (evaluated by qPCR) and COL1 protein relative abundance (evaluated by western blot) induced by CAT in equine endometrial explants from follicular and mid-luteal phases treated for 24 or 48 h. The explants treated with CAT increased COL1 expression. Noscapine decreased COL1A2 transcription at both estrous cycle phases, but COL1 relative protein only at the follicular phase, both induced by CAT. Additionally, the noscapine anti-fibrotic action was found to be more effective in the follicular phase. The CAT treatment caused more fibrosis at the longest period of treatment, while noscapine acted better at the shortest time of treatment. Our results showed that noscapine could act as an anti-fibrotic drug in equine endometrosis by inhibiting CAT in vitro. Noscapine offers a new promising therapeutic tool for treating fibrosis as a single non-selective agent to be considered in the future.

19.
Front Vet Sci ; 8: 753796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35242830

RESUMO

We examined the effect of prostaglandin (PG) E2 on the secretory function of equine corpus luteum (CL), according to the application site: intra-CL injection vs. an intrauterine (intra-U) administration. Moreover, the effect of intra-CL injection vs. intra-U administration of both luteotropic factors: PGE2 and human chorionic gonadotropin (hCG) as a positive control, on CL function was additionally compared. Mares were assigned to the groups (n = 6 per group): (1) an intra-CL saline injection (control); (2) an intra-CL injection of PGE2 (5 mg/ml); (3) an intra-CL injection of hCG (1,500 IU/ml); (4) an intra-U saline administration (control); (5) an intra-U administration of PGE2 (5 mg/5 ml); (6) an intra-U administration of hCG (1,500 IU/5 ml). Progesterone (P4) and PGE2 concentrations were measured in blood plasma samples collected at -2, -1, and 0 (pre-treatment), and at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h after treatments. Moreover, effects of different doses of PGE2 application on the concentration of total PGF2α (PGF2α and its main metabolite 13,14-dihydro-15-keto-prostaglandin F2α- PGFM) was determined. The time point of PGE2, hCG, or saline administration was defined as hour "0" of the experiment. An intra-CL injection of PGE2 increased P4 and PGE2 concentrations between 3 and 4 h or at 3 and 12 h, respectively (p < 0.05). While intra-U administration of PGE2 elevated P4 concentrations between 8 and 24 h, PGE2 was upregulated at 1 h and between 3 and 4 h (p < 0.05). An intra-CL injection of hCG increased P4 concentrations at 1, 6, and 12 h (p < 0.05), while its intra-U administration enhanced P4 and PGE2 concentrations between 1 and 12 h or at 3 h and between 6 and 10 h, respectively (p < 0.05). An application of PGE2, dependently on the dose, supports equine CL function, regardless of the application site, consequently leading to differences in both P4 and PGE2 concentrations in blood plasma.

20.
Animals (Basel) ; 11(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467081

RESUMO

Neutrophils can originate neutrophil extracellular traps (NETs). Myeloperoxidase (MPO) is a peroxidase found in NETs associated to equine endometrosis and can be inhibited by 4-aminobenzoic acid hydrazide (ABAH). Metallopeptidases (MMPs) participate in extracellular matrix stability and fibrosis development. The objectives of this in vitro work were to investigate, in explants of mare's endometrium, (i) the ABAH capacity to inhibit MPO-induced collagen type I (COL1) expression; and (ii) the action of MPO and ABAH on the expression and gelatinolytic activity of MMP-2/-9. Explants retrieved from the endometrium of mares in follicular or mid-luteal phases were treated with MPO, ABAH, or their combination, for 24 or 48 h. The qPCR analysis measured the transcription of COL1A2, MMP2, and MMP9. Western blot and zymography were performed to evaluate COL1 protein relative abundance and gelatinolytic activity of MMP-2/-9, respectively. Myeloperoxidase elevated COL1 relative protein abundance at both treatment times in follicular phase (p < 0.05). The capacity of ABAH to inhibit MPO-induced COL1 was detected in follicular phase at 48 h (p < 0.05). The gelatinolytic activity of activated MMP-2 augmented in mid-luteal phase at 24 h after MPO treatment, but it was reduced with MPO+ABAH treatment. The activity of MMP-9 active form augmented in MPO-treated explants. However, this effect was inhibited by ABAH in the follicular phase at 48 h (p < 0.05). By inhibiting the pro-fibrotic effects of MPO, it might be possible to reduce the development of endometrosis. Metallopeptidase-2 might be involved in an acute response to MPO in the mid-luteal phase, while MMP-9 might be implicated in a prolonged exposition to MPO in the follicular phase.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa