Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 84(1): 180-180.e1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181759

RESUMO

The genetic information stored in DNA is under continuous threat by endogenous and environmental sources of DNA damage. Cells have evolved multiple DNA repair pathways that function in overlapping manners, with principles shared across species. Here, we depict the main DNA repair pathways cells rely on, with the primary lesions they are tackling, along with key players and main DNA transactions. To view this SnapShot, open or download the PDF.


Assuntos
Dano ao DNA , DNA , Reparo do DNA
2.
Mol Cell ; 84(1): 182-182.e1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181760

RESUMO

Completion of DNA replication relies on the ability of replication forks to traverse various types of DNA damage, actively transcribed regions, and structured DNA. The mechanisms enabling these processes are here referred to as DNA damage tolerance pathways. Here, we depict the stalled DNA replication fork structures with main DNA transactions and key factors contributing to the bypass of such blocks, replication restart, and completion. To view this SnapShot, open or download the PDF.


Assuntos
Tolerância ao Dano no DNA , Dano ao DNA , DNA
3.
Mol Cell ; 73(5): 900-914.e9, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733119

RESUMO

Post-replication repair (PRR) allows tolerance of chemical- and UV-induced DNA base lesions in both an error-free and an error-prone manner. In classical PRR, PCNA monoubiquitination recruits translesion synthesis (TLS) DNA polymerases that can replicate through lesions. We find that PRR responds to DNA replication stress that does not cause base lesions. Rad5 forms nuclear foci during normal S phase and after exposure to types of replication stress where DNA base lesions are likely absent. Rad5 binds to the sites of stressed DNA replication forks, where it recruits TLS polymerases to repair single-stranded DNA (ssDNA) gaps, preventing mitotic defects and chromosome breaks. In contrast to the prevailing view of PRR, our data indicate that Rad5 promotes both mutagenic and error-free repair of undamaged ssDNA that arises during physiological and exogenous replication stress.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Cromossomos Fúngicos , DNA Helicases/genética , DNA Fúngico/genética , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mitose , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Reparo de DNA por Recombinação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
4.
Mol Cell ; 60(2): 268-79, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26439300

RESUMO

Elucidating the individual and collaborative functions of genome maintenance factors is critical for understanding how genome duplication is achieved. Here, we investigate a conserved scaffold in budding yeast, Rtt107, and its three partners: a SUMO E3 complex, a ubiquitin E3 complex, and Slx4. Biochemical and genetic findings show that Rtt107 interacts separately with these partners and contributes to their individual functions, including a role in replisome sumoylation. We also provide evidence that Rtt107 associates with replisome components, and both itself and its associated E3s are important for replicating regions far from initiation sites. Corroborating these results, replication defects due to Rtt107 loss and genotoxic sensitivities in mutants of Rtt107 and its associated E3s are rescued by increasing replication initiation events through mutating two master repressors of late origins, Mrc1 and Mec1. These findings suggest that Rtt107 functions as a multi-functional platform to support replication progression with its partner E3 enzymes.


Assuntos
Replicação do DNA , Endodesoxirribonucleases/genética , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/genética , Proteína SUMO-1/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endodesoxirribonucleases/metabolismo , Genoma Fúngico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo
5.
Genes Dev ; 29(19): 2067-80, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443850

RESUMO

Accurate completion of replication relies on the ability of cells to activate error-free recombination-mediated DNA damage bypass at sites of perturbed replication. However, as anti-recombinase activities are also recruited to replication forks, how recombination-mediated damage bypass is enabled at replication stress sites remained puzzling. Here we uncovered that the conserved SUMO-like domain-containing Saccharomyces cerevisiae protein Esc2 facilitates recombination-mediated DNA damage tolerance by allowing optimal recruitment of the Rad51 recombinase specifically at sites of perturbed replication. Mechanistically, Esc2 binds stalled replication forks and counteracts the anti-recombinase Srs2 helicase via a two-faceted mechanism involving chromatin recruitment and turnover of Srs2. Importantly, point mutations in the SUMO-like domains of Esc2 that reduce its interaction with Srs2 cause suboptimal levels of Rad51 recruitment at damaged replication forks. In conclusion, our results reveal how recombination-mediated DNA damage tolerance is locally enabled at sites of replication stress and globally prevented at undamaged replicating chromosomes.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Proteínas Nucleares/metabolismo , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular , Cromatina/metabolismo , Dano ao DNA/genética , DNA Helicases/metabolismo , Proteínas Nucleares/genética , Mutação Puntual , Ligação Proteica , Rad51 Recombinase/metabolismo
6.
Genes Dev ; 29(10): 1000-5, 2015 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-25956905

RESUMO

Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , RNA Helicases DEAD-box/metabolismo , DNA/genética , Reparo do DNA , Genoma Fúngico/genética , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30111537

RESUMO

DNA damage tolerance (DDT) mechanisms facilitate replication resumption and completion when DNA replication is blocked by bulky DNA lesions. In budding yeast, template switching (TS) via the Rad18/Rad5 pathway is a favored DDT pathway that involves usage of the sister chromatid as a template to bypass DNA lesions in an error-free recombination-like process. Here, we establish that the Snf2 family translocase Irc5 is a novel factor that promotes TS and averts single-stranded DNA persistence during replication. We demonstrate that, during replication stress, Irc5 enables replication progression by assisting enrichment of cohesin complexes, recruited in an Scc2/Scc4-dependent fashion, near blocked replication forks. This allows efficient formation of sister chromatid junctions that are crucial for error-free DNA lesion bypass. Our results support the notion of a key role of cohesin in the completion of DNA synthesis under replication stress and reveal that the Rad18/Rad5-mediated DDT pathway is linked to cohesin enrichment at sites of perturbed replication via the Snf2 family translocase Irc5.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Replicação do DNA , DNA Fúngico/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Sistema Livre de Células/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , DNA Helicases , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
8.
Genes Dev ; 28(14): 1604-19, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25030699

RESUMO

A key function of the cellular DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. These JMs need to be resolved before cell division; however, the regulation of this process is only poorly understood. Here, we identify a regulatory mechanism in yeast that critically controls JM resolution by the Mus81-Mms4 endonuclease. Central to this regulation is a conserved complex comprising the scaffold proteins Dpb11 and Slx4 that is under stringent control. Cell cycle-dependent phosphorylation of Slx4 by Cdk1 promotes the Dpb11-Slx4 interaction, while in mitosis, phosphorylation of Mms4 by Polo-like kinase Cdc5 promotes the additional association of Mus81-Mms4 with the complex, thereby promoting JM resolution. Finally, the DNA damage checkpoint counteracts Mus81-Mms4 binding to the Dpb11-Slx4 complex. Thus, Dpb11-Slx4 integrates several cellular inputs and participates in the temporal program for activation of the JM-resolving nuclease Mus81.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/fisiologia , Replicação do DNA , Endodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Endodesoxirribonucleases/genética , Ativação Enzimática/fisiologia , Mutação/genética , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Nucleic Acids Res ; 46(15): 7586-7611, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30011030

RESUMO

The Saccharomyces cerevisiae kinase/adenosine triphosphatase Rio1 regulates rDNA transcription and segregation, pre-rRNA processing and small ribosomal subunit maturation. Other roles are unknown. When overexpressed, human ortholog RIOK1 drives tumor growth and metastasis. Likewise, RIOK1 promotes 40S ribosomal subunit biogenesis and has not been characterized globally. We show that Rio1 manages directly and via a series of regulators, an essential signaling network at the protein, chromatin and RNA levels. Rio1 orchestrates growth and division depending on resource availability, in parallel to the nutrient-activated Tor1 kinase. To define the Rio1 network, we identified its physical interactors, profiled its target genes/transcripts, mapped its chromatin-binding sites and integrated our data with yeast's protein-protein and protein-DNA interaction catalogs using network computation. We experimentally confirmed network components and localized Rio1 also to mitochondria and vacuoles. Via its network, Rio1 commands protein synthesis (ribosomal gene expression, assembly and activity) and turnover (26S proteasome expression), and impinges on metabolic, energy-production and cell-cycle programs. We find that Rio1 activity is conserved to humans and propose that pathological RIOK1 may fuel promiscuous transcription, ribosome production, chromosomal instability, unrestrained metabolism and proliferation; established contributors to cancer. Our study will advance the understanding of numerous processes, here revealed to depend on Rio1 activity.


Assuntos
Ciclo Celular/genética , Metabolismo Energético/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Segregação de Cromossomos/genética , Mitocôndrias/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Fúngico/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Transcrição Gênica/genética
10.
Crit Rev Biochem Mol Biol ; 52(4): 381-394, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28325102

RESUMO

The complete and faithful duplication of the genome is an essential prerequisite for proliferating cells to maintain genome integrity. This objective is greatly challenged by DNA damage encountered during replication, which causes fork stalling and in certain cases, fork breakage. DNA damage tolerance (DDT) pathways mitigate the effects on fork stability induced by replication fork stalling by mediating damage-bypass and replication fork restart. These DDT mechanisms, largely relying on homologous recombination (HR) and specialized polymerases, can however contribute to genome rearrangements and mutagenesis. There is a profound connection between replication and recombination: recombination proteins protect replication forks from nuclease-mediated degradation of the nascent DNA strands and facilitate replication completion in cells challenged by DNA damage. Moreover, in case of fork collapse and formation of double strand breaks (DSBs), the recombination factors present or recruited to the fork facilitate HR-mediated DSB repair, which is primarily error-free. Disruption of HR is inexorably linked to genome instability, but the premature activation of HR during replication often leads to genome rearrangements. Faithful replication necessitates the downregulation of HR and disruption of active RAD51 filaments at replication forks, but upon persistent fork stalling, building up of HR is critical for the reorganization of the replication fork and for filling-in of the gaps associated with discontinuous replication induced by DNA lesions. Here we summarize and reflect on our understanding of the mechanisms that either suppress recombination or locally enhance it during replication, and the principles that underlie this regulation.


Assuntos
Replicação do DNA , Recombinação Genética , Animais , Dano ao DNA , Reparo do DNA , Humanos
11.
Nucleic Acids Res ; 45(1): 215-230, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27694623

RESUMO

Replication across damaged DNA templates is accompanied by transient formation of sister chromatid junctions (SCJs). Cells lacking Esc2, an adaptor protein containing no known enzymatic domains, are defective in the metabolism of these SCJs. However, how Esc2 is involved in the metabolism of SCJs remains elusive. Here we show interaction between Esc2 and a structure-specific endonuclease Mus81-Mms4 (the Mus81 complex), their involvement in the metabolism of SCJs, and the effects Esc2 has on the enzymatic activity of the Mus81 complex. We found that Esc2 specifically interacts with the Mus81 complex via its SUMO-like domains, stimulates enzymatic activity of the Mus81 complex in vitro, and is involved in the Mus81 complex-dependent resolution of SCJs in vivo Collectively, our data point to the possibility that the involvement of Esc2 in the metabolism of SCJs is, in part, via modulation of the activity of the Mus81 complex.


Assuntos
Cromátides/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular , Cromátides/química , Clonagem Molecular , Dano ao DNA , Replicação do DNA , DNA Cruciforme/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Instabilidade Genômica , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
12.
EMBO J ; 33(4): 327-40, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24473148

RESUMO

DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.


Assuntos
Cromossomos Fúngicos/ultraestrutura , Dano ao DNA , DNA Fúngico/genética , Proteínas de Grupo de Alta Mobilidade/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Cromátides/genética , Cromátides/ultraestrutura , Cromatina/ultraestrutura , Cromossomos Fúngicos/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA Cruciforme , DNA Fúngico/efeitos dos fármacos , Instabilidade Genômica , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Metanossulfonato de Metila/farmacologia , Mutagênicos/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
J Biol Chem ; 291(9): 4442-52, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26740628

RESUMO

DNA damage must be repaired in an accurate and timely fashion to preserve genome stability. Cellular mechanisms preventing genome instability are crucial to human health because genome instability is considered a hallmark of cancer. Collectively referred to as the DNA damage response, conserved pathways ensure proper DNA damage recognition and repair. The function of numerous DNA damage response components is fine-tuned by posttranslational modifications, including ubiquitination. This not only involves the enzyme cascade responsible for conjugating ubiquitin to substrates but also requires enzymes that mediate directed removal of ubiquitin. Deubiquitinases remove ubiquitin from substrates to prevent degradation or to mediate signaling functions. The Saccharomyces cerevisiae deubiquitinase Ubp7 has been characterized previously as an endocytic factor. However, here we identify Ubp7 as a novel factor affecting S phase progression after hydroxyurea treatment and demonstrate an evolutionary and genetic interaction of Ubp7 with DNA damage repair pathways of homologous recombination and nucleotide excision repair. We find that deletion of UBP7 sensitizes cells to hydroxyurea and cisplatin and demonstrate that factors that stabilize replication forks are critical under these conditions. Furthermore, ubp7Δ cells exhibit an S phase progression defect upon checkpoint activation by hydroxyurea treatment. ubp7Δ mutants are epistatic to factors involved in histone maintenance and modification, and we find that a subset of Ubp7 is chromatin-associated. In summary, our results suggest that Ubp7 contributes to S phase progression by affecting the chromatin state at replication forks, and we propose histone H2B ubiquitination as a potential substrate of Ubp7.


Assuntos
Cromatina/enzimologia , Proteínas Fúngicas/metabolismo , Fase S , Saccharomycetales/enzimologia , Proteases Específicas de Ubiquitina/metabolismo , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Cisplatino/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , Proteínas Fúngicas/genética , Deleção de Genes , Instabilidade Genômica/efeitos dos fármacos , Histonas/metabolismo , Hidroxiureia/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fase S/efeitos dos fármacos , Saccharomycetales/citologia , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/crescimento & desenvolvimento , Proteases Específicas de Ubiquitina/genética
14.
EMBO J ; 32(8): 1155-67, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23531881

RESUMO

The error-free DNA damage tolerance (DDT) pathway is crucial for replication completion and genome integrity. Mechanistically, this process is driven by a switch of templates accompanied by sister chromatid junction (SCJ) formation. Here, we asked if DDT intermediate processing is temporarily regulated, and what impact such regulation may have on genome stability. We find that persistent DDT recombination intermediates are largely resolved before anaphase through a G2/M damage checkpoint-independent, but Cdk1/Cdc5-dependent pathway that proceeds via a previously described Mus81-Mms4-activating phosphorylation. The Sgs1-Top3- and Mus81-Mms4-dependent resolution pathways occupy different temporal windows in relation to replication, with the Mus81-Mms4 pathway being restricted to late G2/M. Premature activation of the Cdk1/Cdc5/Mus81 pathway, achieved here with phosphomimetic Mms4 variants as well as in S-phase checkpoint-deficient genetic backgrounds, induces crossover-associated chromosome translocations and precocious processing of damage-bypass SCJ intermediates. Taken together, our results underscore the importance of uncoupling error-free versus erroneous recombination intermediate processing pathways during replication, and establish a new paradigm for the role of the DNA damage response in regulating genome integrity by controlling crossover timing.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Troca Genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Instabilidade Genômica , Saccharomyces cerevisiae/fisiologia , Fatores de Tempo
15.
Nucleic Acids Res ; 43(5): 2666-77, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25690888

RESUMO

Many genome maintenance factors have multiple enzymatic activities. In most cases, how their distinct activities functionally relate with each other is unclear. Here we examined the conserved budding yeast Rad5 protein that has both ubiquitin ligase and DNA helicase activities. The Rad5 ubiquitin ligase activity mediates PCNA poly-ubiquitination and subsequently recombination-based DNA lesion tolerance. Interestingly, the ligase domain is embedded in a larger helicase domain comprising seven consensus motifs. How features of the helicase domain influence ligase function is controversial. To clarify this issue, we use genetic, 2D gel and biochemical analyses and show that a Rad5 helicase motif important for ATP binding is also required for PCNA poly-ubiquitination and recombination-based lesion tolerance. We determine that this requirement is due to a previously unrecognized contribution of the motif to the PCNA and ubiquitination enzyme interaction, and not due to its canonical role in supporting helicase activity. We further show that Rad5's helicase-mediated contribution to replication stress survival is separable from recombination. These findings delineate how two Rad5 enzymatic domains concertedly influence PCNA modification, and unveil their discrete contributions to stress tolerance.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , DNA Helicases/genética , Replicação do DNA/genética , Eletroforese em Gel Bidimensional , Immunoblotting , Mutação , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
16.
DNA Repair (Amst) ; 142: 103742, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137555

RESUMO

At the core of cellular life lies a carefully orchestrated interplay of DNA replication, recombination, chromatin assembly, sister-chromatid cohesion and transcription. These fundamental processes, while seemingly discrete, are inextricably linked during genome replication. A set of replisome factors integrate various DNA transactions and contribute to the transient formation of sister chromatid junctions involving either the cohesin complex or DNA four-way junctions. The latter structures serve DNA damage bypass and may have additional roles in replication fork stabilization or in marking regions of replication fork blockage. Here, we will discuss these concepts based on the ability of one replisome component, Ctf4, to act as a hub and functionally link these processes during DNA replication to ensure genome maintenance.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas de Ciclo Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Dano ao DNA , Proteínas Cromossômicas não Histona/metabolismo , Coesinas
17.
PLoS Genet ; 6(11): e1001205, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085632

RESUMO

Damage tolerance mechanisms mediating damage-bypass and gap-filling are crucial for genome integrity. A major damage tolerance pathway involves recombination and is referred to as template switch. Template switch intermediates were visualized by 2D gel electrophoresis in the proximity of replication forks as X-shaped structures involving sister chromatid junctions. The homologous recombination factor Rad51 is required for the formation/stabilization of these intermediates, but its mode of action remains to be investigated. By using a combination of genetic and physical approaches, we show that the homologous recombination factors Rad55 and Rad57, but not Rad59, are required for the formation of template switch intermediates. The replication-proficient but recombination-defective rfa1-t11 mutant is normal in triggering a checkpoint response following DNA damage but is impaired in X-structure formation. The Exo1 nuclease also has stimulatory roles in this process. The checkpoint kinase, Rad53, is required for X-molecule formation and phosphorylates Rad55 robustly in response to DNA damage. Although Rad55 phosphorylation is thought to activate recombinational repair under conditions of genotoxic stress, we find that Rad55 phosphomutants do not affect the efficiency of X-molecule formation. We also examined the DNA polymerase implicated in the DNA synthesis step of template switch. Deficiencies in translesion synthesis polymerases do not affect X-molecule formation, whereas DNA polymerase δ, required also for bulk DNA synthesis, plays an important role. Our data indicate that a subset of homologous recombination factors, together with DNA polymerase δ, promote the formation of template switch intermediates that are then preferentially dissolved by the action of the Sgs1 helicase in association with the Top3 topoisomerase rather than resolved by Holliday Junction nucleases. Our results allow us to propose the choreography through which different players contribute to template switch in response to DNA damage and to distinguish this process from other recombination-mediated processes promoting DNA repair.


Assuntos
Dano ao DNA , Replicação do DNA/genética , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Moldes Genéticos , Cromossomos Fúngicos/genética , DNA Fúngico/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Exonucleases/metabolismo , Genoma Fúngico/genética , Modelos Biológicos , Mutação/genética , Fosforilação , Proteína de Replicação A/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
18.
Mol Oncol ; 17(10): 1950-1952, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681281

RESUMO

A new study by Longo, Roy et al. has solved the structure of the RAD51C-XRCC3 (CX3) heterodimer with a bound ATP analog, identifying two main structural interfaces and defining separable replication fork stability roles. One function relates to the ability of RAD51C to bind and assemble CX3 on nascent DNA, with an impact on the ability of forks to restart upon replication stress. The other relates to effective CX3 heterodimer formation, required for 5' RAD51 filament capping, with effects on RAD51 filament disassembly, fork protection and influencing the persistence of reversed forks.

19.
Biochem Biophys Res Commun ; 426(3): 310-6, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22943854

RESUMO

SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1(-/-) cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2α(+/-) mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2α is SUMOylated during mitosis, the TOP2α(+/-) mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1(-/-) cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.


Assuntos
Endopeptidases/fisiologia , Instabilidade Genômica , Mitose/fisiologia , Proteína SUMO-1/fisiologia , Fuso Acromático/fisiologia , Animais , Antígenos de Neoplasias/genética , Aurora Quinases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Galinhas , Proteínas Cromossômicas não Histona/deficiência , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Demecolcina/farmacologia , Endopeptidases/genética , Mitose/efeitos dos fármacos , Nocodazol/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteína SUMO-1/genética , Fuso Acromático/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Vimblastina/análogos & derivados , Vimblastina/farmacologia , Vinorelbina , Coesinas , Quinase 1 Polo-Like
20.
Proc Natl Acad Sci U S A ; 106(50): 21252-7, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19995966

RESUMO

The evolutionarily conserved Smc5/6 complex is implicated in recombinational repair, but its function in this process has been elusive. Here we report that the budding yeast Smc5/6 complex directly binds to the DNA helicase Mph1. Mph1 and its helicase activity define a replication-associated recombination subpathway. We show that this pathway is toxic when the Smc5/6 complex is defective, because mph1Delta and its helicase mutations suppress multiple defects in mutants of the Smc5/6 complex, including their sensitivity to replication-blocking agents, growth defects, and inefficient chromatid separation, whereas MPH1 overexpression exacerbates some of these defects. We further demonstrate that Mph1 and its helicase activity are largely responsible for the accumulation of potentially deleterious recombination intermediates in mutants of the Smc5/6 complex. We also present evidence that mph1Delta does not alleviate sensitivity to DNA damage or the accumulation of recombination intermediates in cells lacking Sgs1, which is thought to function together with the Smc5/6 complex. Thus, our results reveal a function of the Smc5/6 complex in the Mph1-dependent recombinational subpathway that is distinct from Sgs1. We suggest that the Smc5/6 complex can counteract/modulate a pro-recombinogenic function of Mph1 or facilitate the resolution of recombination structures generated by Mph1.


Assuntos
Proteínas de Ciclo Celular/fisiologia , RNA Helicases DEAD-box/fisiologia , Reparo do DNA , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/genética , Proteínas de Ciclo Celular/genética , RNA Helicases DEAD-box/genética , Dano ao DNA , Proteínas Mutantes , RecQ Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa