Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922557

RESUMO

BACKGROUND: Pathological angiogenesis causes significant vision loss in neovascular age-related macular degeneration and other retinopathies with neovascularization (NV). Neuronal/glial-vascular interactions influence the release of angiogenic and neurotrophic factors. We hypothesized that botulinum neurotoxin serotype A (BoNT/A) modulates pathological endothelial cell proliferation through glial cell activation and growth factor release. METHODS: A laser-induced choroidal NV (CNV) was employed to investigate the anti-angiogenic effects of BoNT/A. Fundus fluorescence angiography, immunohistochemistry, and real-time PCR were used to assess BoNT/A efficacy in inhibiting CNV and the molecular mechanisms underlying this inhibition. Neuronal and glial suppressor of cytokine signaling 3 (SOCS3) deficient mice were used to investigate the molecular mechanisms of BoNT/A in inhibiting CNV via SOCS3. FINDINGS: In laser-induced CNV mice with intravitreal BoNT/A treatment, CNV lesions decreased > 30%; vascular leakage and retinal glial activation were suppressed; and Socs3 mRNA expression was induced while vascular endothelial growth factor A (Vegfa) mRNA expression was suppressed. The protective effects of BoNT/A on CNV development were diminished in mice lacking neuronal/glial SOCS3. CONCLUSION: BoNT/A suppressed laser-induced CNV and glial cell activation, in part through SOCS3 induction in neuronal/glial cells. BoNT/A treatment led to a decrease of pro-angiogenic factors, including VEGFA, highlighting the potential of BoNT/A as a therapeutic intervention for pathological angiogenesis in retinopathies.

2.
Angiogenesis ; 27(3): 379-395, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38483712

RESUMO

Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.


Assuntos
Proteína ADAM17 , Proteínas Proto-Oncogênicas c-fos , Neovascularização Retiniana , Animais , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/genética , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos , Humanos , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia , Retinopatia da Prematuridade/genética , Camundongos Endogâmicos C57BL , Transcrição Gênica , Regulação da Expressão Gênica , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Modelos Animais de Doenças , Angiogênese
3.
J Neuroinflammation ; 19(1): 229, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115971

RESUMO

BACKGROUND: Dysfunctional humoral and cellular innate immunity are key components in the development and progression of age-related macular degeneration (AMD). Specifically, chronically activated microglia and their disturbed regulatory system contribute to retinal degeneration. Galectin-3, a ß-galactose binding protein, is a potent driver of macrophage and microglia activation and has been implicated in neuroinflammation, including neurodegenerative diseases of the brain. Here, we hypothesized that genetic deficiency of galectin-3 or its modulation via TD139 dampens mononuclear phagocyte reactivity and delays retinal degeneration. METHODS: Galectin-3 expression in AMD patients was analyzed by immunohistochemical stainings. Galectin-3 knockout and BALB/cJ mice were exposed to white bright light with an intensity of 15,000 lux for 1 h and Cx3cr1GFP/+ mice to focal blue light of 50,000 lux for 10 min. BALB/cJ and Cx3cr1GFP/+ mice received intraperitoneal injections of 15 mg/kg TD139 or vehicle for five consecutive days, starting one day prior to light exposure. The effects of galectin-3 deficiency or inhibition on microglia were analyzed by immunohistochemical stainings and in situ hybridization of retinal sections and flat mounts. Pro-inflammatory cytokine levels in the retina and retinal pigment epithelium (RPE) were quantified by qRT-PCR and transcriptomic changes were analyzed by RNA-sequencing. Retinal thickness and structure were evaluated by optical coherence tomography. RESULTS: We found that galectin-3 expression was strongly upregulated in reactive retinal mononuclear phagocytes of AMD patients and in the two related mouse models of light-induced retinal degeneration. The experimental in vivo data further showed that specific targeting of galectin-3 by genetic knockout or administration of the small-molecule inhibitor TD139 reduced microglia reactivity and delayed retinal damage in both light damage conditions. CONCLUSION: This study defines galectin-3 as a potent driver of retinal degeneration and highlights the protein as a drug target for ocular immunomodulatory therapies.


Assuntos
Galectina 3 , Degeneração Macular , Microglia , Animais , Citocinas/metabolismo , Galectina 3/antagonistas & inibidores , Galectina 3/genética , Galectina 3/metabolismo , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/prevenção & controle , Camundongos , Microglia/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , RNA/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Tiogalactosídeos/farmacologia , Triazóis/farmacologia
4.
J Neuroinflammation ; 19(1): 182, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35831910

RESUMO

BACKGROUND: We previously reported higher plasma levels of complement fragments C3a and C5a in neovascular Age-related Macular Degeneration (nAMD) patients with macular fibrosis. This study aimed to understand whether complement activation contributes to the development of macular fibrosis and the underlying mechanisms involved. METHODS: Complement activation was blocked using a C5 neutralizing antibody (BB5.1) in C57BL/6J mice after induction of subretinal fibrosis using the two-stage laser protocol. Fibrotic lesions were examined 10 days after the 2nd laser through fundus examination and immunohistochemistry. The expression of C5aR in fibrotic lesions and retinal pigment epithelial (RPE) cultures were examined by confocal microscopy. Primary murine RPE cells were treated with C3a or C5a (10-100 ng/mL) or TGF-ß2 (10 ng/mL). Epithelial-to-mesenchymal transition (EMT) was assessed through various readouts. The expression of E-cadherin, vimentin, fibronectin, α-SMA, Slug, ERK/AKT and pSMAD2/3 were determined by Western blot and immunocytochemistry. Collagen contraction and wound-healing assays were used as functional readouts of EMT. The production of IL-6, TGF-ß1, TGF-ß2 and VEGF by RPE cells were determined by ELISA. PMX53 was used to block C5aR in RPE cultures and in vivo in mice with subretinal fibrosis. RESULTS: Extensive C5b-9 deposition was detected at the site of subretinal fibrosis. BB5.1 treatment completely abrogated complement activation and significantly reduced subretinal fibrosis. C5aR was detected in RPE and infiltrating MHC-II+ cells in subretinal fibrosis. In vitro, RPE cells constitutively express C5/C5a and C5aR, and their expression was increased by TGF-ß2 treatment. C5a but not C3a increased fibronectin, α-SMA, vimentin and Slug expression, and decreased E-cadherin expression in RPE cells. C5a treatment also increased the contractility and migration of RPE cells and enhanced the production of VEGF and TGF-ß1/2. C5a treatment induced pSmad2/3 and pERK1/2 expression in RPE cells and this was blocked by PMX53. PMX53 treatment significantly reduced sodium fluorescein leakage in the subretinal fibrosis model, while collagen-I+ lesions only mildly reduced. CONCLUSIONS: Complement activation is critically involved in the development of subretinal fibrosis, partially through C5a-C5aR-mediated EMT in RPE cells. Targeting complement activation rather than C5a may be a novel approach for the management of macular fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta2 , Animais , Caderinas , Colágeno , Ativação do Complemento , Células Epiteliais/patologia , Fibronectinas/metabolismo , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vimentina/metabolismo
5.
Front Cell Neurosci ; 16: 916719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755781

RESUMO

The subretinal space is devoid of any immune cells under normal conditions and is an immune privileged site. When photoreceptors and/or retinal pigment epithelial cells suffer from an injury, a wound healing process will be initiated. Retinal microglia and the complement system, as the first line of retinal defense, are activated to participate in the wound healing process. If the injury is severe or persists for a prolonged period, they may fail to heal the damage and circulating immune cells will be summoned leading to chronic inflammation and abnormal wound healing, i.e., subretinal or intraretinal fibrosis, a sight-threatening condition frequently observed in rhematogenous retinal detachment, age-related macular degeneration and recurrent uveoretinitis. Here, we discussed the principles of subretinal wound healing with a strong focus on the conditions whereby the damage is beyond the healing capacity of the retinal defense system and highlighted the roles of circulating immune cells in subretinal wound healing and fibrosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa