Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(36): 25221-25229, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711457

RESUMO

The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH3), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mössbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing" with the atomic order in iron oxide nanocrystals.

2.
Langmuir ; 30(35): 10721-7, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157584

RESUMO

Electrochromic thin films of metallo-supramolecular polyelectrolytes based on Fe(OAc)2 and 1,4-bis(2,2':6',2″-terpyridin-4'-yl)benzene are readily prepared by layer-by-layer (LbL) deposition or dip-coating on transparent conducting electrode surfaces. By applying a potential, we can switch the color of the films from blue to colorless. Because of the strong absorption and the fast switching speed, the color change can be observed with the eye. The devices show reversible switching and cycle stability.

3.
Phys Chem Chem Phys ; 16(36): 19694-701, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25113070

RESUMO

Rigid rod-type metallo-supramolecular coordination polyelectrolytes with Fe(II) centres (Fe-MEPEs) are produced via the self-assembly of the ditopic ligand 1,4-bis(2,2':6',2''-terpyridine-4'-yl)benzene (tpy-ph-tpy) and Fe(II) acetate. Fe-MEPEs exhibit remarkable electrochromic properties; they change colour from blue to transparent when an electric potential is applied. This electrochemical process is generally reversible. The blue colour in the ground state is a result of a metal-to-ligand charge transfer at the Fe(II) centre ion in a quasi-octahedral geometry. When annealed at temperatures above 100 °C, the blue colour turns into green and the formerly reversible electrochromic properties are lost, even after cooling down to room temperature. The thermally induced changes in the Fe(II) coordination sphere are investigated in situ during annealing of a solid Fe-MEPE using X-ray absorption fine structure (XAFS) spectroscopy. The study reveals that the thermally induced transition is not accompanied by a redox process at the Fe(II) centre. From the detailed analysis of the XAFS spectra, the changes are attributed to structural changes in the coordination sphere of the Fe(II) site. In the low temperature state, the Fe(II) ion rests in a quasi-octahedral coordination environment surrounded by six nitrogen atoms of the pyridine rings. The axial Fe-N bond length is 1.94 Å, while the equatorial bond length amounts to 1.98 Å. In the high temperature state, the FeN6-site exhibits a distortion with the axial Fe-N bonds being shortened to 1.88 Å and the equatorial Fe-N bonds being elongated to 2.01 Å.

4.
Phys Chem Chem Phys ; 16(37): 19917-27, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25115558

RESUMO

Vitrification is the most effective method for the immobilization of hazardous waste by incorporating toxic elements into a glass structure. Iron phosphate glasses are presently being considered as matrices for the storage of radioactive waste, even of those which cannot be vitrified using conventional borosilicate waste glass. In this study, a structural model of 60P2O5-40Fe2O3 glass is proposed. The model is based on the crystal structure of FePO4 which is composed of [FeO4][PO4] tetrahedral rings. The rings are optimized using the DFT method and the obtained theoretical FTIR and Raman spectra are being compared with their experimental counterparts. Moreover, the proposed model is in very good agreement with X-ray absorption fine structure spectroscopy (XANES/EXAFS) and Mössbauer spectroscopy measurements. According to the calculations the Fe(3+) is in tetrahedral and five-fold coordination. The maximal predicted load of waste constituents into the glass without rebuilding of the structure is 30 mol%. Below this content, waste constituents balance the charge of [FeO4](-) tetrahedra which leads to their strong bonding to the glass resulting in an increase of the chemical durability, transformation and melting temperatures and density.

5.
Environ Sci Technol ; 45(22): 9799-805, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21970732

RESUMO

With the increase in the awareness of the public in the environmental impact of oil shale utilization, it is of interest to reveal the mobility of potentially toxic trace elements in spent oil shale. Therefore, the Cr and As oxidation state in a representative Jordanian oil shale sample from the El-Lajjoun area were investigated upon different lab-scale furnace treatments. The anaerobic pyrolysis was performed in a retort flushed by nitrogen gas at temperatures in between 600 and 800 °C (pyrolytic oil shale, POS). The aerobic combustion was simply performed in porcelain cups heated in a muffle furnace for 4 h at temperatures in between 700 and 1000 °C (burned oil shale, BOS). The high loss-on-ignition in the BOS samples of up to 370 g kg(-1) results from both calcium carbonate and organic carbon degradation. The LOI leads to enrichment in the Cr concentrations from 480 mg kg(-1) in the original oil shale up to 675 mg kg(-1) in the ≥ 850 °C BOS samples. Arsenic concentrations were not much elevated beyond that in the average shale standard (13 mg kg(-1)). Synchrotron-based X-ray absorption near-edge structure (XANES) analysis revealed that within the original oil shale the oxidation states of Cr and As were lower than after its aerobic combustion. Cr(VI) increased from 0% in the untreated or pyrolyzed oil shale up to 60% in the BOS ash combusted at 850 °C, while As(V) increased from 64% in the original oil shale up to 100% in the BOS ash at 700 °C. No Cr was released from original oil shale and POS products by the European compliance leaching test CEN/TC 292 EN 12457-1 (1:2 solid/water ratio, 24 h shaking), whereas leachates from BOS samples showed Cr release in the order of one mmol L(-1). The leachable Cr content is dominated by chromate as revealed by catalytic adsorptive stripping voltammetry (CAdSV) which could cause harmful contamination of surface and groundwater in the semiarid environment of Jordan.


Assuntos
Arsênio/química , Cromo/química , Petróleo/análise , Temperatura Alta , Jordânia , Oxirredução
6.
Anal Bioanal Chem ; 398(5): 1967-72, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20848088

RESUMO

The structure of nanoparticles typically differs from its bulk counterpart. Predominantly, the structures of gold nanoparticles have been under exceedingly intense discussion since the discovery of their high catalytic activity. We found an increasing bond length contraction with decreasing particle size for citrate-stabilized gold nanoparticles in aqueous solution as determined by in situ extended X-ray absorption fine structure (EXAFS) spectroscopy. Particle sizes and size distributions were determined by small-angle X-ray scattering. The analysis of the obtained EXAFS spectra employing ab initio calculations reveals that the Au-Au bond length undergoes a contraction of 2 pm for nanoparticles with a radius of 2.9 nm. NIST reference material RM 8011 gold nanoparticles with a radius of 4.4 nm exhibit a smaller contraction of approximately 1 pm. Finally, gold atoms in RM 8013 particles with a radius of 25.7 nm show distances of 288 pm--identical to the distance in gold foil--and exhibits bulk-like properties. The observed bond length contraction of gold nanoparticles in solution is significantly smaller than previously reported for gold nanoparticle deposited on surfaces, which is up to 15 pm. This indicates that the bond length contraction effect of "free" and "surface-immobilized" nanoparticles differ fundamentally. Such difference could be essential for the understanding of nanoparticle-supported catalysis.

7.
Materials (Basel) ; 12(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934985

RESUMO

Synthesis of spinel zinc ferrite ultrafine needle-like particles that exhibit exceptional stability in aqueous dispersion (without any surfactants) and superparamagnetic response is reported. Comprehensive structural and magnetic characterization of the particles is performed using X-ray and electron diffraction, small angle X-ray scattering, transmission electron microscopy, dynamic light scattering, vibrating sample magnetometry, Mössbauer spectroscopy and high-resolution X-ray spectroscopy. It reveals nearly stoichiometric ZnFe2O4 nanorods with mixed spinel structure and unimodal size distribution of mean length of 20 nm and diameter of 5 nm. Measurements performed in aqueous and dried form shows that particles' properties are significantly changed as a result of drying.

8.
Materials (Basel) ; 11(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486447

RESUMO

Cancer is among the leading causes of death worldwide, thus there is a constant demand for new solutions, which may increase the effectiveness of anti-cancer therapies. We have designed and successfully obtained a novel, bifunctional, hybrid system composed of colloidally stabilized superparamagnetic iron oxide nanoparticles (SPION) and curcumin containing water-soluble conjugate with potential application in anticancer hyperthermia and as nanocarriers of curcumin. The obtained nanoparticulate system was thoroughly studied in respect to the size, morphology, surface charge, magnetic properties as well as some biological functions. The results revealed that the obtained nanoparticles, ca. 50 nm in diameter, were the agglomerates of primary particles with the magnetic, iron oxide cores of ca. 13 nm, separated by a thin layer of the applied cationic derivative of chitosan. These agglomerates were further coated with a thin layer of the sodium alginate conjugate of curcumin and the presence of both polymers was confirmed using thermogravimetry. The system was also proven to be applicable in magnetic hyperthermia induced by the oscillating magnetic field. A high specific absorption rate (SAR) of 280 [W/g] was registered. The nanoparticles were shown to be effectively uptaken by model cells. They were found also to be nontoxic in the therapeutically relevant concentration in in vitro studies. The obtained results indicate the high application potential of the new hybrid system in combination of magnetic hyperthermia with delivery of curcumin active agent.

9.
J Appl Crystallogr ; 50(Pt 2): 481-488, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381973

RESUMO

This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy.

10.
Faraday Discuss ; 162: 45-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015575

RESUMO

Well-defined and facetted bimetallic gold-palladium nanoalloys have been synthesized and anchored in spherical polyelectrolyte brushes (SPB) as composite particles (AuPd@SPB). These particles are better catalysts in aqueous phase than the pure metals. The atomistic arrangement of these nanoalloys has been analysed by extended X-ray absorption fine structure (EXAFS) spectroscopy at the Au-L3 and the Pd-K absorption edge. The samples with high amounts of gold appear as almost statistically mixed random alloys. Alloy compositions with less gold show slight enrichment of Pd at the surface of the particle. In addition, signals of non-metallic palladium appear at the Pd-K edge which indicate the presence of the Pd2+ species in addition to metallic palladium. The relation of these structural features to the catalytic activity is discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa