Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Resist Updat ; 63: 100844, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533630

RESUMO

Selenium is an essential trace element that is crucial for cellular antioxidant defense against reactive oxygen species (ROS). Recently, many selenium-containing compounds have exhibited a wide spectrum of biological activities that make them promising scaffolds in Medicinal Chemistry, and, in particular, in the search for novel compounds with anticancer activity. Similarly, certain tellurium-containing compounds have also exhibited substantial biological activities. Here we provide an overview of the biological activities of seleno- and tellurocompounds including chemopreventive activity, antioxidant or pro-oxidant activity, modulation of the inflammatory processes, induction of apoptosis, modulation of autophagy, inhibition of multidrug efflux pumps such as P-gp, inhibition of cancer metastasis, selective targeting of tumors and enhancement of the cytotoxic activity of chemotherapeutic drugs, as well as overcoming tumor drug resistance. A review of the chemistry of the most relevant seleno- or tellurocompounds with activity against resistant cancers is also presented, paying attention to the synthesis of these compounds and to the preparation of bioactive selenium or tellurium nanoparticles. Based on these data, the use of these seleno- and tellurocompounds is a promising approach in the development of strategies that can drive forward the search for novel therapies or adjuvants of current therapies against drug-resistant cancers.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Selênio , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio , Selênio/química , Selênio/farmacologia , Selênio/uso terapêutico , Telúrio/química , Telúrio/farmacologia , Telúrio/uso terapêutico
2.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768386

RESUMO

Multidrug resistance (MDR) is a major challenge in cancer chemotherapy. Aiming at generating a small library of anticancer compounds for overcoming MDR, lycorine (1), a major Amaryllidaceae alkaloid isolated from Pancratium maritimum, was derivatized. Thirty-one new compounds (2-32) were obtained by chemical transformation of the hydroxyl groups of lycorine into mono- and di-carbamates. Compounds 1-32 were evaluated as MDR reversers, through the rhodamine-123 accumulation assay by flow cytometry and chemosensitivity assays, in resistant human colon adenocarcinoma cancer cells (Colo 320), overexpressing P-glycoprotein (P-gp, ABCB1). Significant inhibition of P-gp efflux activity was observed for the di-carbamate derivatives, mainly those containing aromatic substituents, at non-cytotoxic concentrations. Compound 5, bearing a benzyl substituent, and compounds 9 and 25, with phenethyl moieties, were among the most active, exhibiting strong inhibition at 2 µM, being more active than verapamil at 10-fold higher concentration. In drug combination assays, most compounds were able to synergize doxorubicin. Moreover, some derivatives showed a selective antiproliferative effect toward resistant cells, having a collateral sensitivity effect. In the ATPase assay, selected compounds (2, 5, 9, 19, 25, and 26) were shown to behave as inhibitors.


Assuntos
Adenocarcinoma , Alcaloides de Amaryllidaceae , Antineoplásicos , Neoplasias do Colo , Humanos , Alcaloides de Amaryllidaceae/farmacologia , Adenocarcinoma/tratamento farmacológico , Carbamatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias do Colo/tratamento farmacológico , Resistência a Múltiplos Medicamentos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
3.
Bioorg Med Chem Lett ; 67: 128743, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447343

RESUMO

Antimicrobial resistance arises due to several adaptation mechanisms, being the overexpression of efflux pumps (EPs) one of the most worrisome. In bacteria, EPs can also play important roles in virulence, quorum-sensing (QS) and biofilm formation. To identify new potential antimicrobial adjuvants, a library of diarylpentanoids and chalcones was synthesized and tested. These compounds presented encouraging results in potentiating the activity of antimicrobials, being diarylpentanoid 13 the most promising. Compounds 9, 13, 16, 19, 22, and 23 displayed EP inhibitory effect, mainly in Staphylococcus aureus 272123. Compounds 13, 19, 22, and 23 exhibited inhibitory effect on biofilm formation in S. aureus 272,123 while 13 and 22 inhibited QS in the pair Sphingomonas paucimobilis Ezf 10-17 and Chromobacterium violaceum CV026. The overall results, demonstrated that diarylpentanoid 13 and chalcone 22 were active against all the resistance mechanisms tested, suggesting their potential as antimicrobial adjuvants.


Assuntos
Chalcona , Chalconas , Antibacterianos/farmacologia , Biofilmes , Chalcona/farmacologia , Chalconas/farmacologia , Chromobacterium , Percepção de Quorum , Staphylococcus aureus
4.
J Nat Prod ; 85(4): 910-916, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35293752

RESUMO

The detailed mycochemical analysis of the n-hexane extract of Pholiota populnea led to the isolation of four new lanostane diesters, named pholiols A-D (1-4), together with an acyclic triterpene, (3S,6E,10E,14E,18E,22S)-2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (5), ergosterol (6), and 3ß-hydroxyergosta-7,22-diene (7). The isolation was carried out by multistep flash chromatography, and the structures were elucidated using extensive spectroscopic analyses, including 1D and 2D NMR and MS measurements. The isolated metabolites (1-6) were investigated for cytotoxic activity against Colo205 and Colo320 colon adenocarcinoma and nontumoral MRC-5 cell lines. Among the tested compounds, ergosterol (6) showed substantial cytotoxic activity against all cell lines with IC50 values of 4.9 µM (Colo 205), 6.5 µM (Colo 320), and 0.50 µM (MRC) with no tumor cell selectivity. A P-glycoprotein efflux pump modulatory test on resistant Colo320 cells revealed that pholiols A (1) and B (2) and linear triterpene polyol 5 have the capacity to inhibit the efflux-pump overexpressed in the cells. Moreover, the drug interactions of triterpenes with doxorubicin were studied by the checkerboard method on Colo 320 cells. Pholiols B (2) and D (4) interacted in synergistic and acyclic triterpene 5 in a very strong synergistic manner; the combination index (CI) values at 50% of the growth inhibition dose (ED50) were found to be 0.348, 0.660, and 0.082, respectively. Our results indicate that P. populnea is a promising source for finding new triterpenes with significant chemosensitizing activity on cancer cells.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Triterpenos , Agaricales , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Citotoxinas/farmacologia , Resistência a Múltiplos Medicamentos , Ergosterol/farmacologia , Humanos , Estrutura Molecular , Triterpenos/química , Triterpenos/farmacologia
5.
Mar Drugs ; 20(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621966

RESUMO

The growing number of infectious diseases around the world threatens the effective response of antibiotics, contributing to the increase in antibiotic resistance seen as a global health problem. Currently, one of the main challenges in antimicrobial drug discovery is the search for new compounds that not only exhibit antimicrobial activity, but can also potentiate the antimicrobial activity and revert antibiotics' resistance, through the interference with several mechanisms, including the inhibition of efflux pumps (EPs) and biofilm formation. Inspired by macroalgae brominated bromophenol BDDE with antimicrobial activity, a series of 18 chalcone derivatives, including seven chalcones (9-15), six dihydrochalcones (16-18, and 22-24) and five diarylpropanes (19-21, and 25 and 26), was prepared and evaluated for its antimicrobial activity and potential to fight antibiotic resistance. Among them, chalcones 13 and 14 showed promising antifungal activity against the dermatophyte clinical strain of Trichophyton rubrum, and all compounds reversed the resistance to vancomycin in Enterococcus faecalis B3/101, with 9, 14, and 24 able to cause a four-fold decrease in the MIC of vancomycin against this strain. Compounds 17-24 displayed inhibition of EPs and the formation of biofilm by S. aureus 272123, suggesting that these compounds are inhibiting the EPs responsible for the extrusion of molecules involved in biofilm-related mechanisms. Interestingly, compounds 17-24 did not show cytotoxicity in mouse embryonic fibroblast cell lines (NIH/3T3). Overall, the results obtained suggest the potential of dihydrochalcones 16-18 and 22-24, and diarylpropanes 19-21, 25 and 26, as hits for bacterial EPs inhibition, as they are effective in the inhibition of EPs, but present other features that are important in this matter, such as the lack of antibacterial activity and cytotoxicity.


Assuntos
Anti-Infecciosos , Chalcona , Chalconas , Micoses , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Chalcona/farmacologia , Chalconas/farmacologia , Fibroblastos , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Relação Estrutura-Atividade , Vancomicina/farmacologia
6.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077085

RESUMO

The synthesis of alkyl 2-(4-hydroxyquinolin-2-yl) acetates and 1-phenyl-4-(phenylamino)pyridine-2,6(1H,3H)-dione was optimised. Starting from 4-hydroxyquinolines (4HQs), aminomethylation was carried out via the modified Mannich reaction (mMr) applying formaldehyde and piperidine, but a second paraformaldehyde molecule was incorporated into the Mannich product. The reaction also afforded the formation of bisquinoline derivatives. A new 1H-azeto [1,2-a]quinoline derivative was synthesised in two different ways; namely starting from the aminomethylated product or from the ester-hydrolysed 4HQ. When the aldehyde component was replaced with aromatic aldehydes, Knoevenagel condensation took place affording the formation of the corresponding benzylidene derivatives, with the concomitant generation of bisquinolines. The reactivity of salicylaldehyde and hydroxynaphthaldehydes was tested; under these conditions, partially saturated lactones were formed through spontaneous ring closure. The activity of the derivatives was assessed using doxorubicin-sensitive and -resistant colon adenocarcinoma cell lines and normal human fibroblasts. Some derivatives possessed selective toxicity towards resistant cancer cells compared to doxorubicin-sensitive cancer cells and normal fibroblasts. Cytotoxic activity of the benzylidene derivatives and the corresponding Hammett-Brown substituent were correlated.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Hidroxiquinolinas , Antineoplásicos/farmacologia , Compostos de Benzilideno , Citotoxinas , Doxorrubicina/farmacologia , Humanos
7.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408806

RESUMO

Fluorine represents a privileged building block in pharmaceutical chemistry. Diethylaminosulfur-trifluoride (DAST) is a reagent commonly used for replacement of alcoholic hydroxyl groups with fluorine and is also known to catalyze water elimination and cyclic Beckmann-rearrangement type reactions. In this work we aimed to use DAST for diversity-oriented semisynthetic transformation of natural products bearing multiple hydroxyl groups to prepare new bioactive compounds. Four ecdysteroids, including a new constituent of Cyanotis arachnoidea, were selected as starting materials for DAST-catalyzed transformations. The newly prepared compounds represented combinations of various structural changes DAST was known to catalyze, and a unique cyclopropane ring closure that was found for the first time. Several compounds demonstrated in vitro antitumor properties. A new 17-N-acetylecdysteroid (13) exerted potent antiproliferative activity and no cytotoxicity on drug susceptible and multi-drug resistant mouse T-cell lymphoma cells. Further, compound 13 acted in significant synergism with doxorubicin without detectable direct ABCB1 inhibition. Our results demonstrate that DAST is a versatile tool for diversity-oriented synthesis to expand chemical space towards new bioactive compounds.


Assuntos
Ecdisteroides , Flúor , Animais , Catálise , Dietilaminas/química , Ecdisteroides/química , Flúor/química , Camundongos
8.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430768

RESUMO

Resistance to antibiotics is an emerging problem worldwide, which leads to an increase in morbidity and mortality rates. Several mechanisms are attributed to bacterial resistance, overexpression of efflux pumps being one of the most prominent. As an attempt to develop new effective antimicrobial drugs, which could be able to act against resistant bacterial strains and considering the antimicrobial potential of flavonoids and triazolyl flavonoid derivatives, in particular chalcones, a small library of chalcone derivatives was synthesized and evaluated for its potential to act as antimicrobials and/or adjuvants in combination with antibiotics towards resistant bacteria. Although only compound 7 was able to act as antibacterial, compounds 1, 2, 4, 5, 7, and 9 revealed to be able to potentiate the activity of antibiotics in resistant bacteria. Moreover, five compounds (3, 5-8) demonstrated to be effective inhibitors of efflux pumps in Salmonella enterica serovar Typhimurium SL1344, and four compounds (1, 3, 7, and 10) showed higher ability than reserpine to inhibit biofilm formation of resistant Staphylococcus aureus 272123. Together, our results showed the potential of these compounds regarding reversion of bacterial resistance.


Assuntos
Anti-Infecciosos , Chalcona , Chalconas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Chalcona/farmacologia , Chalconas/farmacologia , Triazóis/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Salmonella typhimurium , Resistência a Múltiplos Medicamentos
9.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430942

RESUMO

The overexpression of efflux pumps is one of the strategies used by bacteria to resist antibiotics and could be targeted to circumvent the antibiotic crisis. In this work, a series of trimethoxybenzoic acid derivatives previously described as antifouling compounds was explored for potential antimicrobial activity and efflux pump (EP) inhibition. First, docking studies on the acridine resistance proteins A and B coupled to the outer membrane channel TolC (AcrAB-TolC) efflux system and a homology model of the quinolone resistance protein NorA EP were performed on 11 potential bioactive trimethoxybenzoic acid and gallic acid derivatives. The synthesis of one new trimethoxybenzoic acid derivative (derivative 13) was accomplished. To investigate the potential of this series of 11 derivatives as antimicrobial agents, and in reverting drug resistance, the minimum inhibitory concentration was determined on several strains (bacteria and fungi), and synergy with antibiotics and EP inhibition were investigated. Derivative 10 showed antibacterial activity against the studied strains, derivatives 5 and 6 showed the ability to inhibit EPs in the acrA gene inactivated mutant Salmonella enterica serovar Typhimurium SL1344, and 6 also inhibited EPs in Staphylococcus aureus 272123. Structure-activity relationships highlighted trimethoxybenzoic acid as important for EP inhibitory activity. Although further studies are necessary, these results show the potential of simple trimethoxybenzoic acid derivatives as a source of feasible EP inhibitors.


Assuntos
Proteínas de Bactérias , Ácido Gálico , Ácido Gálico/farmacologia , Ácido Gálico/metabolismo , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Staphylococcus aureus/metabolismo
10.
Pharm Biol ; 60(1): 1511-1519, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35952383

RESUMO

CONTEXT: Ambrosia artemisiifolia L. (Asteraceae) contains sesquiterpene lactones as characteristic secondary metabolites. Many of these compounds exert antiproliferative and cytotoxic effects. OBJECTIVE: To isolate the sesquiterpene lactones from the aerial part of A. artemisiifolia and to elucidate their cytotoxic, antiproliferative and antibacterial effects. MATERIALS AND METHODS: The compounds were identified by one-dimensional (1D) and 2D NMR, HR-MS spectroscopy from the methanol extract. Isolated compounds were investigated for their cytotoxic and antiproliferative effects on human colonic adenocarcinoma cell lines and human embryonal lung fibroblast cell line using MTT assay. The selectivity of the sesquiterpenes was calculated towards the normal cell line. To check the effect of drug interactions between compounds and doxorubicin, multidrug-resistant Colo 320 cells were used. RESULTS: A new seco-psilostachyinolide derivative, 1,10-dihydro-1'-noraltamisin, and seven known compounds were isolated from the methanol extract. Acetoxydihydrodamsin had the most potent cytotoxic effect on sensitive (Colo205) cell line (IC50 = 7.64 µM), also the strongest antiproliferative effect on Colo205 (IC50 = 5.14 µM) and Colo320 (IC50 = 3.67 µM) cell lines. 1'-Noraltamisin (IC50 = 8.78 µM) and psilostachyin (IC50 = 5.29 µM) showed significant antiproliferative effects on the multidrug-resistant Colo320 cell line and had moderate selectivity against human embryonal lung fibroblast cell line. Psilostachyin C exhibited cytotoxic effects on Colo205 cells (IC50 = 26.60 µM). None of the isolated compounds inhibited ABCB1 efflux pump (EP; P-glycoprotein) or the bacterial EPs. DISCUSSION AND CONCLUSIONS: Acetoxydihydrodamsin, 1'-noraltamisin, and psilostachyin showed the most remarkable cytotoxic and antiproliferative activity on tumour cell lines and exerted selectivity towards MRC-5 cell line.


Assuntos
Adenocarcinoma , Antineoplásicos , Sesquiterpenos , Adenocarcinoma/tratamento farmacológico , Ambrosia/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Lactonas/farmacologia , Metanol , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
11.
Mar Drugs ; 19(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564137

RESUMO

Marine-derived fungi constitute an interesting source of bioactive compounds, several of which exhibit antibacterial activity. These acquire special importance, considering that antimicrobial resistance is becoming more widespread. The overexpression of efflux pumps, capable of expelling antimicrobials out of bacterial cells, is one of the most worrisome mechanisms. There has been an ongoing effort to find not only new antimicrobials, but also compounds that can block resistance mechanisms which can be used in combination with approved antimicrobial drugs. In this work, a library of nineteen marine natural products, isolated from marine-derived fungi of the genera Neosartorya and Aspergillus, was evaluated for their potential as bacterial efflux pump inhibitors as well as the antimicrobial-related mechanisms, such as inhibition of biofilm formation and quorum-sensing. Docking studies were performed to predict their efflux pump action. These compounds were also tested for their cytotoxicity in mouse fibroblast cell line NIH/3T3. The results obtained suggest that the marine-derived fungal metabolites are a promising source of compounds with potential to revert antimicrobial resistance and serve as an inspiration for the synthesis of new antimicrobial drugs.


Assuntos
Antibacterianos/farmacologia , Aspergillus/metabolismo , Produtos Biológicos/farmacologia , Neosartorya/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Células NIH 3T3 , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia
12.
Molecules ; 26(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668621

RESUMO

Juncaceae family represents an abundant source of phenanthrenes. In continuation of our work aiming at the isolation of biologically active compounds from Juncaceae species, Juncus maritimus Lam. was subjected to phytochemical and pharmacological investigations. The isolation process was carried out by using combined extraction and chromatographic methods. The structures of the obtained chemical compounds were elucidated by spectroscopic analysis, including HRESIMS, 1D (1H, 13C-JMOD), and 2D (1H-1H-COSY, HSQC, HMBC, NOESY) NMR spectra. Four new [maritins A-D (1-4)] and seven known phenanthrenes (5-11) were isolated from the plant, of which two (4 and 11) are phenanthrene dimers composed of effusol monomers. Maritin C (3) has an unusual 4,5-ethanophenanthrene skeleton most likely produced by biosynthetic incorporation of a vinyl group into a cyclohexadiene ring. Compounds 1-11 were tested for their antiproliferative activity on seven human tumor cell lines (HeLa, HTM-26, T-47D, A2780, A2780cis, MCF-7, KCR) and one normal cell line (MRC-5) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The dimeric phenanthrenes showed strong antiproliferative activity against T-47D cells with IC50 values of 9.1 and 6.2 µM, respectively.


Assuntos
Magnoliopsida/química , Fenantrenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Conformação Molecular , Fenantrenos/química , Espectroscopia de Prótons por Ressonância Magnética
13.
Molecules ; 25(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348712

RESUMO

The occurrence of phenanthrenes is limited in nature, with such compounds identified only in some plant families. Phenanthrenes were described to have a wide range of pharmacological activities, and numerous research programs have targeted semisynthetic derivatives of the phenanthrene skeleton. The aims of this study were the phytochemical investigation of Juncus tenuis, focusing on the isolation of phenanthrenes, and the preparation of semisynthetic derivatives of the isolated compounds. From the methanolic extract of J. tenuis, three phenanthrenes (juncusol, effusol, and 2,7-dihydroxy-1,8-dimethyl-5-vinyl-9,10-dihydrophenanthrene) were isolated. Juncusol and effusol were transformed by hypervalent iodine(III) reagent, using a diversity-oriented approach. Four racemic semisynthetic compounds possessing an alkyl-substituted p-quinol ring (1-4) were produced. Isolation and purification of the compounds were carried out by different chromatographic techniques, and their structures were elucidated by means of 1D and 2D NMR, and HRMS spectroscopic methods. The isolated secondary metabolites and their semisynthetic analogues were tested on seven human tumor cell lines (A2780, A2780cis, KCR, MCF-7, HeLa, HTB-26, and T47D) and on one normal cell line (MRC-5), using the MTT assay. The effusol derivative 3, substituted with two methoxy groups, showed promising antiproliferative activity on MCF-7, T47D, and A2780 cell lines with IC50 values of 5.8, 7.0, and 8.6 µM, respectively.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Fenantrenos/química , Fenantrenos/farmacologia , Plantas/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Células MCF-7 , Fenantrenos/isolamento & purificação , Extratos Vegetais/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38706362

RESUMO

BACKGROUND: Multidrug resistance (MDR) is the main problem in anticancer therapy today. Causative transmembrane efflux pumps in cancer cells have been reconsidered as promising anticancer target structures to restore anticancer drug sensitivity by various strategies, including MDR modulators. MDR modulators interfere with the efflux pumps and improve the cellular efficiency of chemotherapeutics. So far, only a few candidates have gone through clinical trials with disappointing results because of low specificity and toxic properties. AIM: This study aimed to find Novel MDR modulators to effectively combat multidrug resistance in cancer cells. OBJECTIVE: We synthesized various novel benzo-annelated 1,4-dihydropyridines to evaluate them as MDR modulators towards ABCB1 in cancer cells. METHODS: Synthesized compounds were purified by column chromatography. The MDR modulation of ABCB1 was determined in cellular efflux assays using the flow cytometry technique and cellular fluorescent measurements by the use of each fluorescent substrate. RESULTS: Compounds were yielded in a two-step reaction with structurally varied components. Further, substituent- dependent effects on the determined MDR inhibiting properties towards ABCB1 were discussed. Cellular studies prove that there is no toxicity or restoration of cancer cell sensitivity towards the used anticancer drug. CONCLUSION: Novel MDR modulators could be identified with favorable methoxy and ester group functions. Their use in both ABCB1 non-expressing and overexpressing cells proves a selective toxicity-increasing effect of the applied anticancer agent in the ABCB1 overexpressing cells, whereas the toxicity effect of the anticancer drug was almost unchanged in the non-expressing cells. These results qualify our novel compounds as perspective anticancer drugs compared to MDR modulators with nonselective toxicity properties.

15.
Med Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38726790

RESUMO

BACKGROUND: The increasing antibacterial drug resistance remains a threat to global health with increasing mortality and morbidity. There is an urgent need to find novel antibacterials and develop alternative strategies to combat the increasing antibacterial drug resistance.

Objective: We aimed to synthesize novel small-molecule antibacterials to evaluate the structuredependent antibacterial compound activities against S. aureus and MRSA.

Method: Compounds were synthesized by primary N-alkylation to form alkyl acridinium salts that were further functionalized with substituted phenyl residues and finally purified by column chromatography. The antibacterial growth inhibition activity was determined as MIC value.

Results: The substituent effects on the determined antibacterial growth inhibitory properties have been discussed.

Conclusion: The best activities have been found for compounds with methoxy functions, exceeding the activities of reported novel antibacterial peptides. The compounds have also shown antibacterial drug-enhancing effects, which have been manifested as a reduction in the MIC values of the used antibiotics.

16.
Anticancer Res ; 44(3): 1149-1160, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423632

RESUMO

BACKGROUND/AIM: Indole skeleton has become a significant tool in the field of anticancer and antibacterial therapeutic strategies. The modified aza-Friedel-Crafts reaction by direct coupling of different cyclic imines and indole derivatives has been explored. To investigate the scope and limitations of the reaction and observe the effect of structural modifications, our aim was to resynthesize selected compounds as well as prepare new derivatives starting from 6,7-dimethoxy-3,4-dihydroisoquinoline, (4aR,8aR)-4a,5,6,7,8,8a-hexahydroquinoxalin-2(1H)-one and 7-azaindole. Our further aim was the systematic biological evaluation of selected C-3-coupled indole and azaindole derivatives in favour of having a preliminary overview about the structure-activity relationships. MATERIALS AND METHODS: The synthesis and resynthesis of selected compounds were accomplished by extension of aza-Friedel-Crafts reaction. The products have been tested on bacteria and cancer cells. RESULTS: The most significant efflux pump inhibiting (EPI) activity was observed in the case of 6,7-dihydrothieno[3,2-c]pyridine coupled indole derivative. The reaction of 6,7-dimethoxy-3,4-dihydroisoquinoline with 7-azaindole resulted in the most potent biofilm inhibitor product. Applying indole and 4,9-dihydro-3H-ß-carboline, 6,7-dihydrothieno[3,2-c]pyridine led to the formation of a product with the highest anticancer activity. 6,7-Dimethoxy-3,4-dihydroisoquinoline skeleton and indole as an electron-rich aromatic compound have been found to be effective in the inhibition of ABCB1. CONCLUSION: The compounds presented in the study were investigated regarding different aspects of antibacterial and anticancer activities. Accordingly, some compounds were found to have antibacterial effect on Escherichia coli and Staphylococcus aureus strains, certain C-3-coupled derivatives showed toxicity on sensitive and ABCB1 efflux pump expressing colon adenocarcinoma and a normal, non-cancerous fibroblast cell lines.


Assuntos
Adamantano , Adenocarcinoma , Antipsicóticos , Neoplasias do Colo , Humanos , Bactérias , Antibacterianos/farmacologia , Antivirais , Aminas
17.
RSC Med Chem ; 15(4): 1348-1361, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665830

RESUMO

Multidrug resistance (MDR) remains a challenging issue in cancer treatment. Aiming at finding anticancer agents to overcome MDR, the triacetyl derivative (2) of the labdane diterpenoid lactone andrographolide (1) underwent the Michael-type addition reaction followed by elimination, yielding twenty-three new derivatives, bearing nitrogen-containing substituents (3-25). Their structures were assigned, mainly, by 1D and 2D NMR experiments. The MDR reversal potential of compounds 1-25 was assessed, by functional and chemosensitivity assays, using resistant human ABCB1-gene transfected L5178Y mouse lymphoma cells as a model. Several derivatives exhibited remarkable P-glycoprotein (P-gp) inhibitory ability. Compounds 13 and 20, bearing thiosemicarbazide moieties, were the most active exhibiting a strong MDR reversal effect at 2 µM. Some compounds showed selectivity towards the resistant cells, with compound 5 exhibiting a collateral sensitivity effect associated with significant antiproliferative activity (IC50 = 5.47 ± 0.22 µM). Moreover, all selected compounds displayed synergistic interaction with doxorubicin, with compound 3 being the most active. In the ATPase assay, selected compounds exhibited characteristics of P-gp inhibitors.

18.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399424

RESUMO

Global health faces a significant issue with the rise of infectious diseases caused by bacteria, fungi, viruses, and parasites. The increasing number of multi-drug resistant microbial pathogens severely threatens public health worldwide. Antibiotic-resistant pathogenic bacteria, in particular, present a significant challenge. Therefore, there is an urgent need to identify new potential antimicrobial targets and discover new chemical entities that can potentially reverse bacterial resistance. The main goal of this research work was to create and develop a library of 3,6-disubstituted xanthones based on twin drugs and molecular extension approaches to inhibit the activity of efflux pumps. The process involved synthesizing 3,6-diaminoxanthones through the reaction of 9-oxo-9H-xanthene-3,6-diyl bis(trifluoromethanesulfonate) with various primary and secondary amines. The resulting 3,6-disubstituted xanthone derivatives were then tested for their in vitro antimicrobial properties against a range of pathogenic strains and their efficacy in inhibiting the activity of efflux pumps, biofilm formation, and quorum-sensing. Several compounds have exhibited effective antibacterial properties against the Gram-positive bacterial species tested. Xanthone 16, in particular, has demonstrated exceptional efficacy with a remarkable MIC of 11 µM (4 µg/mL) against reference strains Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212, and 25 µM (9 µg/mL) against methicillin-resistant S. aureus 272123. Furthermore, some derivatives have shown potential as antibiofilm agents in a crystal violet assay. The ethidium bromide accumulation assay pinpointed certain compounds inhibiting bacterial efflux pumps. The cytotoxic effect of the most promising compounds was examined in mouse fibroblast cell line NIH/3T3, and two monoamine substituted xanthone derivatives with a hydroxyl substituent did not exhibit any cytotoxicity. Overall, the nature of the substituent was critical in determining the antimicrobial spectra of aminated xanthones.

19.
ACS Omega ; 8(38): 34816-34825, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37780020

RESUMO

The chloroform extract of Origanum majorana exhibited high antibacterial and antifungal activities against 12 bacterial and 4 fungal strains; therefore, it was subjected to bioassay-guided isolation to afford six compounds (1-6). The structures were determined via one- and two-dimensional nuclear magnetic spectroscopy and high-resolution electrospray ionization mass spectrometry experiments. The compounds were identified as furanonaphthoquinones [majoranaquinone (1), 2,3-dimethylnaphtho[2,3-b]furan-4,9-dione (2)], diterpenes [19-hydroxyabieta-8,11,13-trien-7-one (3), 13,14-seco-13-oxo-19-hydroxyabieta-8-en-14-al (4)], and flavonoids [sterubin (5) and majoranin (6)]. Compounds 1 and 2 were first obtained from a natural source and compounds 3 and 4 were previously undescribed. Majoranaquinone (1) exhibited a high antibacterial effect against 4 Staphylococcus, 1 Moraxella, and 1 Enterococcus strains (MIC values between 7.8 µM and 1 mM). In the efflux pump inhibition assay, majoranaquinone (1) showed substantial activity in Escherichia coli ATCC 25922 strain. Furthermore, 1 was found to be an effective biofilm formation inhibitor on E. coli ATCC 25922 and E. coli K-12 AG100 bacteria. Our findings proved that bioactivities of majoranaquinone (1) significantly exceed those of the essential oil constituents; therefore, it should also be considered when assessing the antimicrobial effects of O. majorana.

20.
Antibiotics (Basel) ; 12(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37237825

RESUMO

Drug resistance is rising to alarming levels, constituting one of the major threats to global health. The overexpression of efflux pumps and the formation of biofilms constitute two of the most common resistance mechanisms, favoring the virulence of bacteria. Therefore, the research and development of effective antimicrobial agents that can also counteract resistance mechanisms are extremely important. Pyrazino[2,1-b]quinazoline-3,6-diones, from marine and terrestrial organisms and simpler synthetic analogues, were recently disclosed by us as having relevant antimicrobial properties. In this study, using a multi-step approach, it was possible to synthesize new pyrazino[2,1-b]quinazoline-3,6-diones focusing on compounds with fluorine substituents since, to the best of our knowledge, the synthesis of fluorinated fumiquinazoline derivatives had not been attempted before. The new synthesized derivatives were screened for antibacterial activity and, along with previously synthetized pyrazino[2,1-b]quinazoline-3,6-diones, were characterized for their antibiofilm and efflux-pump-inhibiting effects against representative bacterial species and relevant resistant clinical strains. Several compounds showed relevant antibacterial activity against the tested Gram-positive bacterial species with MIC values in the range of 12.5-77 µM. Furthermore, some derivatives showed promising results as antibiofilm agents in a crystal violet assay. The results of the ethidium bromide accumulation assay suggested that some compounds could potentially inhibit bacterial efflux pumps.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa