Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(15): 3240-3255, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886582

RESUMO

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Citidina Desaminase , Dano ao DNA , Replicação do DNA , Humanos , Citidina Desaminase/metabolismo , Citidina Desaminase/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Instabilidade Genômica , Linhagem Celular Tumoral , Proteínas
2.
EMBO Rep ; 22(9): e52145, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34347354

RESUMO

The APOBEC3 cytidine deaminases are implicated as the cause of a prevalent somatic mutation pattern found in cancer genomes. The APOBEC3 enzymes act as viral restriction factors by mutating viral genomes. Mutation of the cellular genome is presumed to be an off-target activity of the enzymes, although the regulatory measures for APOBEC3 expression and activity remain undefined. It is therefore difficult to predict circumstances that enable APOBEC3 interaction with cellular DNA that leads to mutagenesis. The APOBEC3A (A3A) enzyme is the most potent deaminase of the family. Using proteomics, we evaluate protein interactors of A3A to identify potential regulators. We find that A3A interacts with the chaperonin-containing TCP-1 (CCT) complex, a cellular machine that assists in protein folding and function. Importantly, depletion of CCT results in A3A-induced DNA damage and cytotoxicity. Evaluation of cancer genomes demonstrates an enrichment of A3A mutational signatures in cancers with silencing mutations in CCT subunit genes. Together, these data suggest that the CCT complex interacts with A3A, and that disruption of CCT function results in increased A3A mutational activity.


Assuntos
Chaperonina com TCP-1 , Citidina Desaminase , Chaperonina com TCP-1/genética , Citidina Desaminase/genética , Mutagênese , Proteínas/genética
3.
bioRxiv ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38077016

RESUMO

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.

4.
Bioeng Transl Med ; 8(3): e10487, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206200

RESUMO

Biomaterials are implanted in millions of individuals worldwide each year. Both naturally derived and synthetic biomaterials induce a foreign body reaction that often culminates in fibrotic encapsulation and reduced functional lifespan. In ophthalmology, glaucoma drainage implants (GDIs) are implanted in the eye to reduce intraocular pressure (IOP) in order to prevent glaucoma progression and vision loss. Despite recent efforts towards miniaturization and surface chemistry modification, clinically available GDIs are susceptible to high rates of fibrosis and surgical failure. Here, we describe the development of synthetic, nanofiber-based GDIs with partially degradable inner cores. We evaluated GDIs with nanofiber or smooth surfaces to investigate the effect of surface topography on implant performance. We observed in vitro that nanofiber surfaces supported fibroblast integration and quiescence, even in the presence of pro-fibrotic signals, compared to smooth surfaces. In rabbit eyes, GDIs with a nanofiber architecture were biocompatible, prevented hypotony, and provided a volumetric aqueous outflow comparable to commercially available GDIs, though with significantly reduced fibrotic encapsulation and expression of key fibrotic markers in the surrounding tissue. We propose that the physical cues provided by the surface of the nanofiber-based GDIs mimic healthy extracellular matrix structure, mitigating fibroblast activation and potentially extending functional GDI lifespan.

5.
Cancer Cell ; 40(4): 393-409.e9, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35413271

RESUMO

CD4+ T cells that recognize tumor antigens are required for immune checkpoint inhibitor efficacy in murine models, but their contributions in human cancer are unclear. We used single-cell RNA sequencing and T cell receptor sequences to identify signatures and functional correlates of tumor-specific CD4+ T cells infiltrating human melanoma. Conventional CD4+ T cells that recognize tumor neoantigens express CXCL13 and are subdivided into clusters expressing memory and T follicular helper markers, and those expressing cytolytic markers, inhibitory receptors, and IFN-γ. The frequency of CXCL13+ CD4+ T cells in the tumor correlated with the transcriptional states of CD8+ T cells and macrophages, maturation of B cells, and patient survival. Similar correlations were observed in a breast cancer cohort. These results identify phenotypes and functional correlates of tumor-specific CD4+ T cells in melanoma and suggest the possibility of using such cells to modify the tumor microenvironment.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Animais , Antígenos de Neoplasias/genética , Linfócitos T CD4-Positivos , Humanos , Macrófagos , Melanoma/genética , Camundongos , Microambiente Tumoral
6.
Invest Ophthalmol Vis Sci ; 62(1): 27, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502460

RESUMO

Purpose: The purpose of this study was to describe the cellular architecture of normal human peripapillary sclera (PPS) and evaluate surface topography's role in fibroblast behavior. Methods: PPS cryosections from nonglaucomatous eyes were labelled for nuclei, fibrillar actin (FA), and alpha smooth muscle actin (αSMA) and imaged. Collagen fibrils were imaged using second harmonic generation. Nuclear density and aspect ratio of the internal PPS (iPPS), outer PPS (oPPS), and peripheral sclera were determined. FA and αSMA fibril alignment with collagen extracellular matrix (ECM) was determined. PPS fibroblasts were cultured on smooth or patterned membranes under mechanical strain and in the presence of TGFß1 and 2. Results: The iPPS (7.1 ± 2.0 × 10-4, P < 0.0001) and oPPS (5.3 ± 1.4 × 10-4, P = 0.0013) had greater nuclei density (nuclei/µm2) than peripheral sclera (2.5 ± 0.8 × 10-4). The iPPS (2.0 ± 0.3, P = 0.002) but not oPPS (2.4 ± 0.4, P = 0.45) nuclei had smaller aspect ratios than peripheral (2.7 ± 0.5) nuclei. FA was present throughout the scleral stroma and was more aligned with oPPS collagen (9.6 ± 1.9 degrees) than in the peripheral sclera (15.9 ± 3.9 degrees, P =0.002). The αSMA fibers in the peripheral sclera were less aligned with collagen fibrils (26.4 ± 4.8 degrees) than were FA (15.9 ± 3.9 degrees, P = 0.0002). PPS fibroblasts cultured on smooth membranes shifted to an orientation perpendicular to the direction of cyclic uniaxial strain (1 Hz, 5% strain, 42.2 ± 7.1 degrees versus 62.0 ± 8.5 degrees, P < 0.0001), whereas aligned fibroblasts on patterned membranes were resistant to strain-induced reorientation (5.9 ± 1.4 degrees versus 10 ± 3.3 degrees, P = 0.21). Resistance to re-orientation was reduced by TGFß treatment (10 ± 3.3 degrees without TGFß1 compared to 23.1 ± 4.5 degrees with TGFß1, P < 0.0001). Conclusions: Regions of the posterior sclera differ in cellular density and nuclear morphology. Topography alters the cellular response to mechanical strain.


Assuntos
Fibroblastos/citologia , Esclera/citologia , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Anatomia Regional , Biomarcadores/metabolismo , Contagem de Células , Células Cultivadas , Colágeno/metabolismo , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Disco Óptico/anatomia & histologia , Doadores de Tecidos
7.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396986

RESUMO

Therapeutic vaccines that augment T cell responses to tumor antigens have been limited by poor potency in clinical trials. In contrast, the transfer of T cells modified with foreign transgenes frequently induces potent endogenous T cell responses to epitopes in the transgene product, and these responses are undesirable, because they lead to rejection of the transferred T cells. We sought to harness gene-modified T cells as a vaccine platform and developed cancer vaccines composed of autologous T cells modified with tumor antigens and additional adjuvant signals (Tvax). T cells expressing model antigens and a broad range of tumor neoantigens induced robust and durable T cell responses through cross-presentation of antigens by host DCs. Providing Tvax with signals such as CD80, CD137L, IFN-ß, IL-12, GM-CSF, and FLT3L enhanced T cell priming. Coexpression of IL-12 and GM-CSF induced the strongest CD4+ and CD8+ T cell responses through complimentary effects on the recruitment and activation of DCs, mediated by autocrine IL-12 receptor signaling in the Tvax. Therapeutic vaccination with Tvax and adjuvants showed antitumor activity in subcutaneous and metastatic preclinical mouse models. Human T cells modified with neoantigens readily activated specific T cells derived from patients, providing a path for clinical translation of this therapeutic platform in cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem , Aloenxertos , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/administração & dosagem , Autoenxertos , Linfócitos T CD8-Positivos/transplante , Vacinas Anticâncer/imunologia , Reações Cruzadas/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Memória Imunológica , Imunoterapia Adotiva , Interleucina-12/imunologia , Tecido Linfoide/imunologia , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pesquisa Translacional Biomédica
8.
Bioeng Transl Med ; 6(1): e10179, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33532583

RESUMO

The purpose of these studies was to evaluate clinical, functional, and histopathological features of glaucoma drainage implants (GDIs) fabricated from novel, custom-tailored expanded polytetrafluoroethylene (ePTFE). Implants of matching footprints were fabricated from silicone (Control) and novel, bilayered ePTFE. ePTFE implants included: (a) one that inflated with aqueous humor (AH) (High), (b) one that inflated with a lower profile (Low), (c) an uninflated implant not connected to the anterior chamber (Flat), and (d) one filled with material that did not allow AH flow (Filled). All implants were placed in adult New Zealand White rabbits and followed over 1-3 months with clinical exams and intraocular pressure. The permeability of tissue capsules surrounding GDIs was assessed using constant-flow perfusion with fluoresceinated saline at physiologic flow rates. After sacrifice, quantitative histopathological measures of capsule thickness were compared among devices, along with qualitative assessment of cellular infiltration and inflammation. Capsular thickness was significantly reduced in blebs over ePTFE (61.4 ± 53 µm) versus silicone implants (193.6 ± 53 µm, p = .0086). AH exposure did not significantly alter capsular thickness, as there was no significant difference between High and Filled (50.9 ± 29, p = .34) implants. Capsules around ePTFE implants demonstrated permeability with steady-state pressure: flow relationships at physiologic flow rates and rapid pressure decay with flow cessation, while pressure in control blebs increased even at low flow rates and showed little decay. Perfused fluorescein dye appeared beyond the plate border only in ePTFE implants. ePTFE implants are associated with thinner, more permeable capsules compared to silicone implants simulating presently used devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa