Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(5): C1437-C1450, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525542

RESUMO

Plasma apelin levels are reduced in aging and muscle wasting conditions. We aimed to investigate the significance of apelin signaling in cardiac and skeletal muscle responses to physiological stress. Apelin knockout (KO) and wild-type (WT) mice were subjected to high-intensity interval training (HIIT) by treadmill running. The effects of apelin on energy metabolism were studied in primary mouse skeletal muscle myotubes and cardiomyocytes. Apelin increased mitochondrial ATP production and mitochondrial coupling efficiency in myotubes and promoted the expression of mitochondrial genes both in primary myotubes and cardiomyocytes. HIIT induced mild concentric cardiac hypertrophy in WT mice, whereas eccentric growth was observed in the left ventricles of apelin KO mice. HIIT did not affect myofiber size in skeletal muscles of WT mice but decreased the myofiber size in apelin KO mice. The decrease in myofiber size resulted from a fiber type switch toward smaller slow-twitch type I fibers. The increased proportion of slow-twitch type I fibers in apelin KO mice was associated with upregulation of myosin heavy chain slow isoform expression, accompanied with upregulated expression of genes related to fatty acid transport and downregulated expression of genes related to glucose metabolism. Mechanistically, skeletal muscles of apelin KO mice showed defective induction of insulin-like growth factor-1 signaling in response to HIIT. In conclusion, apelin is required for proper skeletal and cardiac muscle adaptation to high-intensity exercise. Promoting apelinergic signaling may have benefits in aging- or disease-related muscle wasting conditions.NEW & NOTEWORTHY Apelin levels decline with age. This study demonstrates that in trained mice, apelin deficiency results in a switch from fast type II myofibers to slow oxidative type I myofibers. This is associated with a concomitant change in gene expression profile toward fatty acid utilization, indicating an aged-muscle phenotype in exercised apelin-deficient mice. These data are of importance in the design of exercise programs for aging individuals and could offer therapeutic target to maintain muscle mass.


Assuntos
Adaptação Fisiológica , Apelina , Camundongos Knockout , Músculo Esquelético , Condicionamento Físico Animal , Animais , Apelina/metabolismo , Apelina/genética , Camundongos , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Masculino , Miócitos Cardíacos/metabolismo , Metabolismo Energético , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/patologia
2.
J Clin Med ; 13(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398401

RESUMO

Aims: We report 30-day, 1-year, and 3-year outcomes for a new TAVR programme that used five different transcatheter heart valve (THV) systems. Methods: From 2014 to 2020, 122 consecutive patients with severe aortic stenosis (AS) received TAVR based on the Heart Team decision. Outcomes were analysed for the whole study population and in addition the first 63 patients (Cohort A, 2014 to 2019) were compared to the last 59 patients (Cohort B, 2019 to 2020). Outcomes included VARC-2 definitions and device performance assessed via transthoracic echocardiography by independent high-volume investigators. Results: The mean patient age was 77.9 ± 6.1 years old, and 48 (39.3%) were male. The mean logistic Euroscore II was 4.2 ± 4.5, and the mean STS score was 6.9 ± 4.68. The systems used were as follows: Medtronic Corevalve Evolute R/PRO (82 patients-67.2%); Abbott Portico (13-10.6%); Boston Scientific Lotus (10-8.2%); Meril Myval (11-9%); and Boston Scientific Neo Accurate (6-5%). Access was transfemoral (95.9% of patients); surgical cut down (18% vs. percutaneous 77.8%); subclavian (n = 2); trans-axillary (n = 2); and direct aorta (n = 1). VARC-2 outcomes were as follows: device success rate 97.5%; stroke rate 1.6%; major vascular complication 3.3%; permanent pacemaker implantation 12.4%. At discharge, the incidences of grade I and II aortic regurgitation were 39.95 and 55.5%, respectively. At one year, all-cause mortality was 7.4% without admissions for valve-related dysfunction. The 3-year all-cause mortality and all-stroke rates were 22.9% and 4.1%, respectively. Between the 1-year and 3-year follow-ups, valve-related dysfunction was detected in three patients; one had THV system endocarditis that led to death. There was a remarkable but statistically non-significant decrease in mortality from Cohort A to Cohort B [four (6.3%) vs. one patient (1.7%), p = 0.195] and major vascular complications occurred at a significantly higher rate in the Cohort B [zero (0%) vs. four (6.8% patient, p = 0.036)]. Overall, we found that using multiple devices was safe and allowed for a learning team to achieve a high device success rate from the beginning (97.5%). Conclusions: TAVR with different THV systems showed acceptable early and mid-term outcomes for survival, technical success, and valve-related adverse events in high-risk patients with significant AS, even in the learning curve phase.

3.
J Clin Med ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256647

RESUMO

Aims: To report our single-center data regarding the initial 52 consecutive patients with a bicuspid aortic valve who underwent a Transcatheter Aortic Valve Implantation (TAVI) procedure using the new balloon-expandable MYVAL system. The focus is on reporting procedural details and outcomes over the 30-day postoperative period. Methods: From December 2019 to July 2023, 52 consecutive patients underwent a TAVI procedure with bicuspid anatomy. All patients had moderate to-high surgical risk or were unsuitable for surgical aortic valve replacement based on the Heart Team's decision. Outcomes were analyzed according to the VARC-2 criteria. The results of bicuspid patients were compared to patients with tricuspid anatomy in the overall study group, and further analysis involved a comparison between 52 pairs after propensity score matching. The device performance was evaluated using transthoracic echocardiography. Data collection was allowed by the Local Ethical Committee. Results: The mean age was 71 ± 7.1 years, and 65.4% were male. The mean Euroscore II and STS score were 3.3 ± 3.2 and 5.2 ± 3.3, respectively. Baseline characteristics and echocardiographic parameters were well balanced even in the unmatched comparison. Procedures were significantly longer in the bicuspid group and resulted in a significantly higher ARI index. All relevant anatomic dimensions based on the CT scans were significantly higher in bicuspid anatomy, including a higher implantation angulation, a higher rate of horizontal aorta and a higher proportion of patients with aortopathy. In the unmatched bicuspid vs. tricuspid comparison, postprocedural outcomes were as follows: in-hospital mortality 0% vs. 1.4% (p = 0.394), device success 100% vs. 99.1% (p = 0.487), TIA 1.9% vs. 0% (p = 0.041), stroke 1.9% vs. 0.9% (p = 0.537), major vascular complication 3.8% vs. 2.3% (p = 0.530), permanent pacemaker implantation 34% vs. 30.4% (p = 0.429), and cardiac tamponade 0% vs. 0.5% (p = 0.624). In the propensity-matched bicuspid vs. tricuspid comparison, postprocedural outcomes were as follows: in-hospital mortality 0% vs. 0%, device success 100% vs. 100%, TIA 1.9% vs. 0% (p = 0.315), stroke 1.9% vs. 0.9% (p = 0.315), major vascular complication 3.8% vs. 0% (p = 0.475), permanent pacemaker implantation 34% vs. 24% (p = 0.274), and cardiac tamponade 0% vs. 0%. There was no annular rupture nor need for second valve or severe aortic regurgitation in both the unmatched and matched comparison. The peak and mean aortic gradients did not differ at discharge and at 30-day follow-up between the two groups regardless of whether the comparison was unmatched or matched. There were no paravalvular leakages (moderate or above) in the bicuspid patients. Intermediate and extra sizes of the Myval THV system used a significantly higher proportion in bicuspid anatomy with a significantly higher oversize percentage in tricuspid anatomy. Conclusions: The TAVI procedure using the Myval THV system in patients with significant aortic stenosis and bicuspid aortic valve anatomy is safe and effective. Hemodynamic parameters do not differ between tricuspid and bicuspid patients. However, the permanent pacemaker implantation rate is higher than expected; its relevance on long-term survival is controversial.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa